
หน้า 1 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

ภาคผนวก ค

การพัฒนาระบบ

คุณสมบัติเฉพาะของการพัฒนาระบบ

1. การวางแผน (Planning)

1.1. แผนการดำเนินการโครงการอย่างละเอียด

1.2. แผนการศึกษา วิเคราะห์ และเก็บข้อมูลเกี่ยวกับความต้องการในการใช้งานระบบงาน

1.3. แผนการออกแบบและพัฒนาระบบงานตามความต้องการใช้งานของระบบงาน

1.4. แผนการจัดทำคู่มือและการฝึกอบรมการใช้งานและปฏิบัติงานกับระบบงาน

1.5. แผนการนำระบบไปใช้จริง

1.6. แผนการใช้ทรัพยากรบุคคลในโครงการ

2. การรวบรวมความต้องการ (Requirement Gathering)

2.1. ผู้รับจ้างต้องดำเนินการศึกษา เก็บรวบรวมความต้องการ (Requirement) ขั้นตอน และกระบวนการทำงาน
ที่เกี ่ยวข้องสำหรับการพัฒนาแพลตฟอร์มการตรวจเงินแผ่นดินจากสำนักงานการตรวจเงินแผ่นดินและ
แหล่งข้อมูลอื่นที่น่าเชื่อถือได้ เพื่อใช้ร่วมในการวิเคราะห์และออกแบบระบบได้อย่างครบถ้วนถูกต้องพร้อมทั้ง
สรุปเป็นเอกสารข้อกำหนดความต้องการระบบ

2.2. ผู้รับจ้างต้องจัดทำเอกสารข้อกำหนดความการระบบ (System Requirement Specification - SRS)

2.2.1. จัดทำเป็นไฟล์ PDF และไฟล์แก้ไขได้ เช่น Word หรือเทียบเท่า

2.2.2. ต้องมีสารบัญ (Table of Contents) และการจัดลำดับหัวข้อที่ชัดเจนตามมาตรฐาน IEEE 830

หรือมาตรฐานอื่นที่เทียบเท่า พร้อมแสดง Check list เพ่ือตรวจสอบการปฏิบัติตามมาตรฐาน

2.3. ผู้รับจ้างต้องจัดทำเอกสารวิเคราะห์และออกแบบระบบ (System Design Specification - SDS)
ตามรูปแบบที่สำนักงานการตรวจเงินแผนดินกำหนด และมีแผนภาพ (Diagram) อย่างน้อยดังนี้

2.3.1. ผู้รับจ้างต้องจัดทำ Prototype ของระบบ โดยจัดทำรูปแบบไฟล์แก้ไขได้ เช่น Figma หรือ
เทียบเท่า

2.3.2. ผู้รับจ้างต้องจัดทำ Architecture Diagram เพื่อแสดงภาพรวมของระบบ รวมถึงการ
เชื่อมต่อระหว่างองค์ประกอบต่าง ๆ และการออกแบบที่รองรับ High Availability และ Scalability

2.3.3. ผู้รับจ้างต้องจัดทำ Use Case Diagram เพ่ือแสดงการทำงานของระบบในมุมมองของผู้ใช้
รวมถึงระบุ Actor และ Use Case ทั้งหมด เพ่ือใช้เป็นข้อมูลประกอบการวิเคราะห์และออกแบบระบบ

หน้า 2 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

2.3.4. ผู้รับจ้างต้องจัดทำ Activity Diagram เพื่อแสดงลำดับการทำงานของแต่ละกระบวนการ
ในระบบ ตั้งแต่การเริ่มต้นจนสิ้นสุด รวมถึงการตรวจสอบเงื่อนไขและการตัดสินใจ

2.3.5. ผู้รับจ้างต้องจัดทำ State Diagram สำหรับ Object ที่มีการเปลี่ยนสถานะ เพ่ือแสดงการ
เปลี่ยนผ่านของสถานะในกรณีต่าง ๆ เช่น การอนุมัติ การยกเลิก หรือการเปลี่ยนสถานะคำสั่งซื้อ

2.3.6. ผู้รับจ้างต้องจัดทำ Sequence Diagram เพื่อแสดงลำดับการทำงานและการสื่อสาร
ระหว่าง Object หรือ Component ภายในระบบ รวมถึงการเรียกใช้ API หรือ External Service

2.3.7. ผู้รับจ้างต้องจัดทำ Class Diagram เพ่ือแสดงโครงสร้างของ Class, Attribute, Method
และความสัมพันธ์ระหว่าง Class ต่าง ๆ ในระบบที่ใช้แนวคิด Object-Oriented Programming

2.3.8. ผู้รับจ้างต้องจัดทำ Component Diagram เพ่ือแสดงการจัดวางและการเชื่อมต่อระหว่าง
Component ภายในระบบ รวมถึงการสื่อสารระหว่าง Service, API Gateway และ Database

2.3.9. ผู ้ร ับจ้างต้องจัดทำ Deployment Diagram เพื ่อแสดงการติดตั ้งระบบในแต่ละ
Environment (Dev, UAT, Production) รวมถึงการใช้ Load Balancer, Firewall, และ Cloud Services
ที่เก่ียวข้อง

2.3.10. ผู้รับจ้างต้องจัดทำเอกสารแผนการ Deployment และ Workflows พร้อมตัวอย่างการ
ทดสอบในแต่ละ Environment ด้วย

2.3.11. ผู้รับจ้างต้องจัดทำ ER Diagram เพ่ือแสดงโครงสร้างฐานข้อมูล รวมถึง Entity, Attribute
และ Relationship ระหว่าง Table เพ่ือให้มั่นใจว่าการจัดเก็บและเรียกใช้ข้อมูลมีประสิทธิภาพ

2.3.12. ผู้รับจ้างต้องจัดทำเอกสาร DevSecOps Workflow Diagram หรือ Pipeline Flow ที่
แสดงขั้นตอนทั้งหมด พร้อมอธิบายวัตถุประสงค์ของแต่ละขั้น และระบุว่าจะตรวจสอบความถูกต้องได้อย่างไร

2.3.13. ต้องจัดทำเอกสารแสดงแผนผังการเชื่อมโยง (Integration Architecture) กับระบบ
Monitoring โดยแสดงตัวอย่างการตั้งค่าระบบ Monitoring

2.3.14. ผู้รับจ้างต้องจัดทำเอกสารตามข้อ ๒.๓.๒ ถึงข้อ ๒.๓.๑๓ ในรูปแบบดังต่อไปนี้

๑) ไฟล์ PDF และไฟล์แก้ไขได้ (เช่น Word) หรือใช้ Web-based Documentation/
Version Control System (เช่น Confluence, GitLab Pages, MkDocs) ในการจัดเก็บและควบคุมเวอร์ชั่น
เอกสารต้นฉบับ (ไฟล์ต้นฉบับ Diagram เช่น draw.io, Mermaid, PlantUML) แทนการส่งไฟล์หลายฟอร์แมต

๒) Diagram ทั้งหมดจัดทำในรูปแบบไฟล์ทีแ่ก้ไขได้ เช่น .drawio, .svg

๓) แนบไฟล์ภาพ เช่น PNG, JPEG เพ่ือความสะดวกในการอ้างอิงและตรวจสอบ

2.4. ผู ้ร ับจ้างต้องจัดทำเอกสารผลการทดสอบของระบบทั ้งหมด รวมถึงแยกผลการทดสอบของ
ซอฟต์แวร์สำเร็จรูป (Commercial Off-The-Shelf - COTS) ออกจากระบบที่พัฒนาขึ้นเอง โดยต้องระบุว่าใน

หน้า 3 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

แต่ละกรณีสามารถทดสอบอะไรได้/ไม่ได้ พร้อมเหตุผลประกอบ และเอกสารต้องสามารถตรวจสอบย้อนหลัง
ได้ (audit trail) โดยจัดทำในรูปแบบดังต่อไปนี้

2.4.1. จัดทำเป็นไฟล์ PDF และไฟล์ Word ที่แก้ไขได้

2.4.2. ไฟล์รายงานผลการทดสอบเชิงเทคนิค เช่น Log Files, CSV, JSON หรือ Excel ต้องแนบ
ในรูปแบบไฟล์ดิบ (raw files) เพ่ือให้ตรวจสอบย้อนหลัง (audit trail) ได ้

2.4.3. สำหรับผลการทดสอบซอฟต์แวร์สำเร็จรูป (Commercial Off-The-Shelf - COTS) ต้อง
แยกรายงานออกมาต่างหาก โดยใช้รูปแบบเดียวกัน

2.5. ในกรณีที่สำนักงานการตรวจเงินแผ่นดินมีการขอแก้ไขหรือปรับปรุงการออกแบบที่ได้จัดทำและ
ส่งมอบแล้ว ผู ้ร ับจ้างต้องดำเนินการแก้ไขและปรับปรุงเอกสารที ่เกี ่ยวข้องทั ้งหมด (เช่น SRS, SDS,
Wireframe, Diagram ต่าง ๆ) ให้สอดคล้องกับการแก้ไขนั้นโดยไม่คิดค่าใช้จ่ายเพ่ิมเติม ทั้งนี้ การแก้ไขต้องอยู่
ภายในขอบเขตงานเดิมที่ระบุไว้ใน TOR และไม่เกินกว่าขอบเขตงานเดิมหรือเงื่อนไขที่ผู้รับจ้างได้เสนอราคาไว้
หากการแก้ไขหรือปรับปรุงมีขอบเขตเกินกว่างานเดิมที่ตกลงกันไว้ หรือเป็นการเปลี่ยนแปลงสาระสำคัญของ
ระบบ ผู้ว่าจ้างและผู้รับจ้างจะต้องหารือร่วมกันเพื่อกำหนดวิธีการดำเนินงานและการชดเชยที่เป็นธรรมต่อทั้ง
สองฝ่าย

2.6. จัดทำเอกสารอธิบายสิทธิ์การใช้งาน (Role Metric)

2.7. การจัดการสิทธิ์การใช้งานซอฟต์แวร์และไลบรารี (Software License Compliance) เพื่อให้มั่นใจ
ว่าการใช้งานซอฟต์แวร์ในโครงการถูกต้องตามกฎหมาย และไม่มีความเสี่ยงด้านลิขสิทธิ์ ผู้รับจ้างต้องรับรองว่า
ซอฟต์แวร์ ไลบรารี หรือส่วนประกอบจากบุคคลที่สามที่นำมาใช้ มีการจัดการสิทธิ์การใช้งานอย่างเหมาะสม
โดยมีข้อกำหนดอย่างน้อยดังนี้

2.7.1. ซอฟต์แวร์และไลบรารีทั้งหมดที่นำมาใช้ต้องมีสิทธิ์การใช้งานที่ถูกต้องตามกฎหมาย และ
สอดคล้องกับรูปแบบการใช้งานในโครงการ หากเป็นซอฟต์แวร์โอเพนซอร์ส ต้องใช้ License ที่ได้รับการ
รับรองโดย Open Source Initiative (OSI) เช่น MIT, BSD, Apache 2.0 หรือที่เทียบเท่า

2.7.2. ต้องจัดทำรายการซอฟต์แวร์ ไลบรารี และส่วนประกอบที่ใช้งานทั้งหมดในโครงการ โดย
ระบุชื่อ เวอร์ชั่น และประเภท License ที่เก่ียวข้อง เพ่ือใช้เป็นหลักฐานประกอบการตรวจสอบ

2.7.3. ต้องปฏิบัติตามเงื่อนไขของ License อย่างเคร่งครัด เช่น การแสดงชื่อผู้พัฒนาเดิม การ
แนบสำเนา License และการระบุการเปลี่ยนแปลงที่เกิดขึ้นจากผู้รับจ้าง (ถ้ามี)

2.7.4. อนุญาตให้ใช้ซอฟต์แวร์หรือไลบรารีภายใต้สัญญาอนุญาตแบบ GPL หรือ AGPL ได้ กรณีท่ี

2.7.4.1. การใช้งานเป็นการเรียกผ่าน API, Web Service หรือเป็นโมดูลแยกส่วน (ไม่
ผนวกโค้ดเข้าในระบบหลักโดยตรง)

2.7.4.2. ไม่ส่งผลให้ซอร์สโค้ดของระบบหลักต้องถูกเปิดเผยหรือกระทบสิทธิ์การใช้งาน
เชิงพาณิชย์

หน้า 4 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

2.7.4.3. ผู้รับจ้างต้องจัดทำ “รายการซอฟต์แวร์/ไลบรารี” พร้อมรายละเอียดวิธีการใช้งาน
และส่งให้ผู้ว่าจ้างพิจารณาและขออนุมัติล่วงหน้า

2.7.5. ผู้รับจ้างต้องใช้เครื่องมือหรือกระบวนการที่เหมาะสมในการตรวจสอบและติดตามการ
ปฏิบัติตามสิทธิ์การใช้งานซอฟต์แวร์ (Software License Compliance) อย่างต่อเนื่อง เช่น การใช้ Software
Composition Analysis (SCA) Tools

3. การออกแบบ (Design)

3.1. ผู้รับจ้างต้องออกแบบระบบตามคุณสมบัติเฉพาะตามภาคผนวก ก รายละเอียดคุณลักษณะเฉพาะ
ของระบบสารสนเทศของโครงการ สามารถปรับเปลี่ยนตามความต้องการของสำนักงานการตรวจเงินแผ่นดิน
และต้องเป็นไปตามกฎหมาย ระเบียบ ประกาศ ข้อกำหนด และมาตรฐาน ดังนี้

3.1.1. พระราชบัญญัติว่าด้วยการกระทำความผิดเกี่ยวกับคอมพิวเตอร์ พ.ศ. 2560

3.1.2. พระราชบัญญัติคุ้มครองข้อมูลส่วนบุคคล พ.ศ. 2562

3.1.3. พระราชบัญญัติการรักษาความม่ันคงปลอดภัยไซเบอร์ พ.ศ. 2562

3.1.4. พระราชบัญญัติว่าด้วยธุรกรรมทางอิเล็กทรอนิกส์ พ.ศ. 2544

3.1.5. มาตรฐานเว็บไซต์ภาครัฐ (Government Website Standard)

3.1.6. มาตรฐานรัฐบาลดิจิทัล ว่าด้วยกรอบแนวทางการพัฒนามาตรฐานการเชื ่อมโยงและ
แลกเปลี่ยนข้อมูลภาครัฐ (Thailand Government Information eXchange :TGIX)

3.1.7. มาตรฐานรัฐบาลดิจิทัล ว่าด้วยแนวทางการเปิดเผยข้อมูลเปิดภาครัฐในรูปแบบดิจิทัลต่อ
สาธารณะ (Open Government Data Guideline)

3.1.8. มาตรฐานและหลักเกณฑ์การจัดทำกระบวนการและการดำเนินงานทางดิจิทัลว่าด้วยเรื่อง
การใช้ดิจิทัลไอดีสำหรับบริการภาครัฐ สำหรับบุคคลธรรมดาที่มีสัญชาติไทย (Digital ID)

3.1.9. กฎหมาย ระเบียบ ประกาศ ข้อกำหนด และมาตรฐานอื่น ๆ ที่เกี่ยวข้องกับการพัฒนา
แพลตฟอร์มภาครัฐ

3.2. ผู้รับจ้างต้องนำแนวคิดของ Domain-Driven Design (DDD) มาประยุกต์ใช้ในการออกแบบและ
พัฒนาระบบ โดยครอบคลุมแนวทางหลัก อย่างน้อยดังต่อไปนี้

3.2.1. ต้องเริ่มต้นจากการวิเคราะห์ปัญหาในมุมมองของธุรกิจ (Problem Space) และสร้าง
แบบจำลองของระบบจาก Business Domain จริง

3.2.2. ใช้ Model แทน Business Entity อย่างถูกต้อง โดยต้องมีการใช้ Model แสดง
ความสัมพันธ์ระหว่าง Entity ต่าง ๆ เช่น User, Permission อย่างชัดเจน และสะท้อนการทำงานทางจริง

หน้า 5 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.2.3. แยกขอบเขตบริบท (Bounded Context) โดยแยกโมดูลหรือบริการตาม Context ของ
แต่ละโดเมน เช่น User Context, Permission Context เพื่อป้องกันความซับซ้อนและลดการพึ่งพากัน
ระหว่างโมดูล

3.2.4. จัดกลุ่ม Aggregates เพื่อคง Consistency โดยใช้ Aggregate Root ควบคุมกลุ่มของ
Object ที่ต้อง Consistent กัน เช่น User เป็น Root ของ UserDetail

3.2.5. แยก Entity และ Value Object อย่างชัดเจน เช่น

3.2.5.1. Entity : มี ID และสามารถเปลี่ยนแปลงสถานะได้
3.2.5.2. Value Object : ไม่มี ID และไม่เปลี่ยนแปลงสถานะ (immutable) เช่น Address

3.2.6. ใช้แนวคิด Layered Architecture โดยแบ่งระบบออกเป็น 4 ชั้น ได้แก่ Presentation,
Application, Domain, Infrastructure เพ่ือให้โครงสร้างมีความชัดเจนและแยกความรับผิดชอบกัน

3.2.7. ออกแบบ Model และ Use Case ตามเหตุการณ์ (Event Storming) ให้มีการระบุ Use Case
และเหตุการณ์ (Event) ทางธุรกิจอย่างชัดเจน เช่น "Create User ", "Disable User"

3.2.8. มี Layer สำหรับจัดการ Object เช่น Factory, Repository และ Service

3.2.8.1. Factory: สำหรับสร้าง Object
3.2.8.2. Service: สำหรับประมวลผล Logic
3.2.8.3. Repository: สำหรับจัดการ Persistence เช่น DB

3.3. ผู ้รับจ้างระบบต้องออกแบบโดยใช้สถาปัตยกรรมแบบยืดหยุ ่นและขยายขนาดได้ (Scalable
Architecture) ในลักษณะแบบแยกส่วน (Modular Design) เพ่ือให้รองรับจำนวนผู้ใช้พร้อมกันจำนวนมากได้
อย่างมีประสิทธิภาพ และสนับสนุนการพัฒนาและบำรุงรักษาได้ง่าย โดยอาจใช้แนวทางการพัฒนาแบบ
Microservices หรือวิธีอื่นที่ตอบโจทย์ด้านการขยายระบบและการรองรับผู้ใช้จำนวนมากในอนาคตโดยมี
คุณสมบัติอย่างน้อยดังนี้

3.3.1. มีคุณสมบัติ Single Responsibility โดยแต่ละ Service ย่อยต้องรับผิดชอบเพียงเรื่อง
เดียว (Single Concern) เพ่ือให้ง่ายต่อการดูแล ปรับปรุง และขยายในอนาคต เช่น บริการ “User Service”
จัดการเฉพาะเรื่องข้อมูลผู้ใช้งานเท่านั้น เช่น การดึงข้อมูล การเพ่ิม การแก้ไข

3.3.2. ใช้ Lightweight Protocols

3.3.2.1. ใช้ REST, gRPC หรือ Message Queue (MQTT, Kafka) ตามความเหมาะสม
3.3.2.2. หลีกเลี่ยงการใช้ SOAP หรือโปรโตคอลหนักโดยไม่จำเป็น

3.3.3. ต้องรองรับ Service Discovery

3.3.3.1. ต้องใช้ระบบ Service Registry เช่น Consul, Eureka หรือ Kubernetes Service
3.3.3.2. เพ่ือให้สามารถค้นหาและเชื่อมต่อระหว่าง Services ได้แบบ Dynamic

หน้า 6 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.3.4. มีคุณสมบัติ Containers โดยระบบต้องออกแบบให้แต่ละ Service ย่อยถูกบรรจุและ
จัดการภายใน container เช่น Docker เพ่ือให้สามารถนำไปติดตั้ง (Deploy) บนเครื่องเซิร์ฟเวอร์ใดก็ได้ ไม่ว่า
จะเป็นสภาพแวดล้อม Dev, UAT หรือ Production โดยไม่ต้องปรับแต่งหรือแก้ไขการตั้งค่าของเครื่องนั้น ทำ
ให้มั ่นใจได้ว่าการทำงานของ service จะเหมือนกันทุกสภาพแวดล้อม ต้องมี Docker file สำหรับแต่ละ
Service และรองรับการ Deploy บน Kubernetes หรือเทียบเท่า

3.3.5. มีคุณสมบัติการจัดการ Container หลายตัวพร้อมกัน (Orchestration) โดยมี
รายละเอียดอย่างน้อยดังนี้

3.3.5.1. ระบบต้องสามารถจัดการ container หลายตัวพร้อมกันได้ โดยใช้เครื่องมือ
Orchestration เช่น Kubernetes

3.3.5.2. ระบบต้องสามารถเพ่ิมหรือลดจำนวน container ของบริการย่อย เช่น user-
service ได้อัตโนมัติตามจำนวนผู้ใช้งานที่เพ่ิมข้ึนหรือลดลง

3.3.5.3. ระบบต้องมีการตรวจสอบและติดตามสถานะ active user session เพื่อใช้
เป็นข้อมูลประกอบการเพ่ิมหรือลดจำนวน container อย่างเหมาะสม

3.3.5.4. ระบบต้องรองรับการปรับขนาด (horizontal scaling) แบบ dynamic โดย
สามารถเพ่ิมหรือลดจำนวน instance ของ service ได้อัตโนมัติตามภาระงาน (load) ที่เปลี่ยนแปลง

3.3.5.5. หากไม่มีผู้ใช้งาน Service ใดติดต่อกันนานเกิน 2 ชั่วโมง หรือระยะเวลาที่ผู้
ว่าจ้างกำหนด ระบบต้องสามารถปรับจำนวน Replica ของ Service ดังกล่าวลงเป็นค่าต่ำสุด (minimum)
หรือปรับลดการใช้ทรัพยากรโดยอัตโนมัติ (Scale down / Scale-to-Zero) ตามนโยบาย Resource
Management เพ่ือคืนทรัพยากรให้ระบบ โดยไม่กระทบต่อการทำงานของบริการอ่ืน

3.3.5.6. ระบบต้องรองรับการลดการใช้ทรัพยากรโดยอัตโนมัติ (Downscaling) ผ่าน
กลไกของ Kubernetes เช่น Horizontal Pod Autoscaler (HPA) หรือ Scale-to-Zero โดยการลดขนาด
ดังกล่าวต้องไม่กระทบต่อการทำงานของบริการอื่นในระบบ ทั้งนี้ต้องมีการกำหนด ResourceQuota และ
PriorityClass อย่างเหมาะสม เพ่ือป้องกันไม่ให้การลดขนาดของบริการหนึ่งส่งผลกระทบต่อ SLA ของบริการ
อ่ืน

3.3.5.7. เมื่อมีการร้องขอใช้งานใหม่ ระบบต้องสามารถปรับขนาด (Scale-up) ของ
บริการที่ถูกลดขนาดจนเหลือศูนย์ (Scale-to-Zero) หรือที่ถูก Downscale ให้อยู่ในระดับที่พร้อมให้บริการได้
โดยอัตโนมัติ ภายในเวลาที่สอดคล้องกับ SLA ที่กำหนด ทั้งนี้ หากทรัพยากรของคลัสเตอร์ถูกใช้งานเต็มจนไม่
สามารถ Scale-up ได้ ระบบต้องมีกลไกบริหารจัดการทรัพยากร เช่น การปรับลดจำนวน instance ของ
บริการที่มีความสำคัญรองลงมา โดยการปรับลดดังกล่าวต้องดำเนินการภายใต้เงื่อนไขของ PriorityClass และ
Pod Disruption Budget (PDB) เพ่ือให้มั่นใจว่าบริการที่สำคัญยังคงสามารถให้บริการได้ตาม SLA ที่กำหนด

3.3.5.8. ระยะเวลาในการปลุก service และให้พร้อมรับคำสั่งใช้งานได้ต้องไม่เกิน 10
วินาที หรือระยะเวลาที่ผู้ว่าจ้างยอมรับ โดยต้องทำได้โดยอัตโนมัติ

3.3.5.9. ระบบต้องได้รับการออกแบบให้สามารถทำงานต่อได้แม้เกิดความล้มเหลวของ
บริการบางส่วน (Partial Failure)

หน้า 7 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.3.5.10. ในกรณีที ่บริการสำคัญ เช่น user-service ล้มเหลวหรือไม่สามารถ
ตอบสนองได้ ระบบที่เก่ียวข้องต้องสามารถทำงานต่อไปได้โดยไม่ล้มตาม โดยทำการบันทึกข้อมูลที่จำเป็น เช่น
ข้อมูลผู้ใช้งาน ไว้ในระบบ queue ชั่วคราว

3.3.5.11. ระบบ queue ที่ใช้งานต้องมีความน่าเชื่อถือสูง (High Reliability) เช่น
RabbitMQ, Apache Kafka หรือเทคโนโลยีอ่ืนที่มีความสามารถดีกว่า เพ่ือรองรับการเก็บข้อมูลและส่งข้อมูล
ซ้ำ (Retry) ได้อย่างปลอดภัย

3.3.5.12. ระบบต้องมีการออกแบบกระบวนการ Retry และ Dead-letter queue
(DLQ) เพ่ือให้สามารถจัดการข้อมูลที่ประมวลผลล้มเหลวได้อย่างเหมาะส

3.3.5.13. ระบบต้องมีการ monitor และแจ้งเตือนอัตโนมัติ (Auto Alert) หากเกิด
ความผิดปกติในกระบวนการ queue หรือเมื่อ Service สำคัญไม่สามารถให้บริการได้ รวมทั้งต้องสามารถ
แสดงข้อมูลสถานะของแต่ละ Service ได้ เช่น

1) แสดงให้เห็นว่า Service ใดถูกปรับจำนวน Replica ลงตามค่าขั้นต่ำ
(minimum)

2) แสดงปริมาณการใช้ทรัพยากร (Resource Usage) ของแต่ละ
service เช่น CPU, Memory, Inode, Disk I/O และ Network I/O แบบ real-time หรือ near real-time

3) การขยายขนาด (Scalability) แต่ละ service ย่อยต้องสามารถ
ขยายตัว (Scale) ได้ง่าย เช่น เพ่ิม instance ของ login-service จาก 2 เป็น 10 ตัวในช่วงที่มีการเข้าสู่ระบบ
เป็นจำนวนมาก

4) ความสามารถในการสังเกต (Observability) ระบบต้องสามารถ
ตรวจสอบการทำงานได้ เช่น ติดตั้ง Grafana และ Prometheus เพ่ือดูการทำงานของ auth-service แบบ Real-time

5) ความปลอดภัย (Security) ระบบต้องได้รับการออกแบบโดยคำนึงถึง
ความปลอดภัยเป็นหลัก (Secure by Design) โดยมีข้อกำหนดอย่างน้อยดังนี้

5.1) ข้อมูลผู้ใช้ที่จัดเก็บในระบบ เช่น ข้อมูลส่วนบุคคลและข้อมูล
รับรอง ต้องได้รับการเข้ารหัสด้วยมาตรฐาน AES-256 หรือที่ดีกว่า

5.2) การจัดการคีย์เข้ารหัสต้องดำเนินการผ่านระบบบริหารจัดการ
คีย์ (Key Management System - KMS) ที่ปลอดภัย เช่น AWS KMS หรือ HashiCorp Vault หรือ KMS
แบบ Open Source หรือแบบอ่ืน ๆ ที่เหมาะสมและได้รับความเห็นชอบจากสำนักงานการตรวจเงินแผ่นดิน

6) API Gateway เป็นตัวกลางในการควบคุมการรับส่งข้อมูล เช่น
Client เรียก /api/users ผ่าน Gateway โดย Gateway จะส่งคำขอไปที่ user-service จริงๆ ผ่าน API
Gateway โดยแต่ละ API ต้องสื่อสารผ่าน API Gateway และมีคุณสมบัติอย่างน้อยดังต่อไปนี้

6.1) ใช้ HTTPS เพ่ือเข้ารหัสข้อมูลระหว่างไคลเอนต์และเซิร์ฟเวอร์
ป้องกันการดักฟัง (eavesdropping) และการโจมตีแบบการแอบดักฟังข้อมูลระหว่างผู้ส่งสารและผู้รับสาร
(Man-in-the-Middle - MITM)

หน้า 8 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

6.2) ใช้ OAuth2 หรือ JWT เพื่อมอบสิทธิ์ (authorization) ให้

แอปพลิเคชันเข้าถึงข้อมูลผู้ใช้โดยไม่ต้องเปิดเผยรหัสผ่าน
6.3) ใช้ API Key หลายระดับเพื่อจำกัดสิทธิ์ของผู้ใช้ เช่น ระบบ

หน้าบ้าน (Frontend) ใช้ API Key ที่สามารถอ่านข้อมูล (read-only) ได้เท่านั้น ขณะที่ระบบหลังบ้าน
Admin ใช้ Key ที่สามารถสร้างหรือแก้ไขข้อมูล (read-write)

6.4) ใช้การกำหนดสิทธิ ์ (Authorization) เพื ่อควบคุมว่าใคร
สามารถทำอะไรได้บ้าง เช่น ผู้อำนวยการสามารถดูข้อมูลผู้ใต้บังคับบัญชาได้แต่ไม่สามารถแก้ไขข้อมูลได้

6.5) ใช้ Rate Limiting เพื่อจำกัดจำนวนคำขอที่ client สามารถ
ส่งเข้ามาได้ในช่วงเวลาหนึ่ง เช่น จำกัด API สำหรับการค้นหาไม่เกิน 100 ครั้ง/นาที/ไอพี เพื่อป้องกันการ
โจมตีแบบ DDoS

6.6) ใช้ API Versioning เพื่อสามารถเปลี่ยนแปลง API ได้โดยไม่
กระทบ client เดิม เช่น การเรียก GET /api/v1/users/123 ใช้ข้อมูลแบบโครงสร้างเก่า ในขณะที่ GET

/api/v2/users/123 มีการเพิ่มข้อมูลใหม่ เช่น วันเกิดผู้ใช้

6.7) ใช้ Allowlist เพื่อจำกัดว่าเฉพาะ IP หรือบัญชีผู้ใช้ที่กำหนด
เท่านั้นที่สามารถเข้าถึง API ได้ เช่น อนุญาตเฉพาะ IP ของสำนักงานใหญ่เข้าถึง API สำหรับการแก้ไข
ฐานข้อมูลพนักงาน

6.8) การจ ัดการข้อผ ิดพลาด (Error Handling) ระบบต้อง
ออกแบบการจัดการข้อผิดพลาดให้ปลอดภัยและสอดคล้องกับมาตรฐาน HTTP โดยมีข้อกำหนดอย่างน้อยดังนี้

• ใช้รหัสสถานะ HTTP มาตรฐานเพื ่อระบุประเภทของ
ข้อผิดพลาด เช่น

o 400 Bad Request – สำหรับคำขอที่มีข้อมูลไม่

ถูกต้องหรือรูปแบบไม่ถูกต้อง (เช่น อีเมลไม่ถูกต้อง)
o 401 Unauthorized – เมื่อผู้ใช้ไม่ได้รับการยืนยัน

ตัวตน
o 403 Forbidden – เมื่อผู้ใช้ไม่มีสิทธิ์เข้าถึงทรัพยากร

o 404 Not Found – เมื่อไม่พบทรัพยากรที่ร้องขอ

o 500 Internal Server Error – สำหรับข้อผิดพลาด

ภายในของเซิร์ฟเวอร์
• หลีกเลี ่ยงการใช้รหัสสถานะที ่ไม ่เป็นมาตรฐานหรือ

กำหนดเอง เพ่ือความเข้ากันได้กับเครื่องมือและไคลเอนต์ต่าง ๆ
• ห้ามเปิดเผยรายละเอียดภายในของระบบ เช่น Stack

Trace หรือข้อมูลโครงสร้างภายใน เพ่ือป้องกันการเปิดเผยข้อมูลที่อาจนำไปสู่ช่องโหว่ด้านความปลอดภัย

หน้า 9 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

• สำหรับข้อผิดพลาดที่ไม่คาดคิดหรือข้อผิดพลาดภายใน
ของเซิร์ฟเวอร์ ควรตอบกลับด้วยรหัสสถานะ 500 Internal Server Error และข้อความที่เป็นมิตรต่อผู้ใช้ เช่น
"An unexpected error occurred. Please try again later."

• บันทึกข้อผิดพลาดภายในระบบ (Log) สำหรับการ
วิเคราะห์และแก้ไขปัญหาในภายหลัง โดยไม่เปิดเผยข้อมูลดังกล่าวต่อผู้ใช้

• ระบบควรม ีการตรวจสอบและแจ ้งเต ือนเม ื ่ อ เกิด
ข้อผิดพลาดที่สำคัญ เช่น การเชื่อมต่อฐานข้อมูลล้มเหลว หรือบริการภายนอกไม่สามารถเข้าถึงได้ เพื่อให้
สามารถดำเนินการแก้ไขได้อย่างรวดเร็ว

6.9) ทำ Input Validation เพื่อป้องกันข้อมูลไม่ถูกต้องหรือการ
โจมตี เช่น เมื่อรับหมายเลขโทรศัพท์ผ่าน API ต้องตรวจสอบว่าเป็นตัวเลขเท่านั้นและมีความยาวไม่เกิน 10 หลัก

6.10) การแบ่งหน้า (Pagination) เพื ่อเพิ ่มประสิทธิภาพในการ
จัดการชุดข้อมูลขนาดใหญ่ โดยการส่งข้อมูลกลับไปยังผู้ใช้แบบไหลต่อเนื่อง (streaming) เพื่อเพิ่มความ
รวดเร็วในการให้บริการ

6.11) การบันทึกล็อกแบบอะซิงโครนัส (Asynchronous Logging)
เป็นการส่งข้อมูลล็อกไปยังบัฟเฟอร์ที่ไม่ต้องล็อก (lock-free buffer) และคืนการทำงานทันที แทนที่จะเขียน
ลงดิสก์ทุกครั้ง จากนั้นระบบจะทำการเขียนข้อมูลล็อกลงดิสก์เป็นระยะ ช่วยลดภาระการทำงาน I/O อย่างมี
นัยสำคัญ

6.12) การแคชข้อมูล (Data Caching) ข้อมูลที่มีการเรียกใช้งาน
บ่อย ๆ จะถูกเก็บไว้ในแคช เพ่ือให้สามารถดึงข้อมูลได้รวดเร็วยิ่งขึ้น ลูกค้าจะทำการตรวจสอบแคชก่อนที่จะทำ
การดึงข้อมูลจากฐานข้อมูล โดยระบบเก็บข้อมูลในหน่วยความจำ (เช่น Redis) ทำให้การเข้าถึงข้อมูลเร็วขึ้นมาก

6.13) การบีบอัดข้อมูล (Payload Compression) เพ่ือให้การรับส่ง
ข้อมูลระหว่างผู้ใช้งานและเซิร์ฟเวอร์เร็วขึ้น จึงมีการบีบอัดข้อมูลทั้งฝั่งการร้องขอและการตอบกลับ เช่น การใช้
gzip ลดเวลาที่ใช้ในการอัปโหลดและดาวน์โหลด

6.14) การใช้พูลการเชื่อมต่อ (Connection Pooling) เป็นการใช้
กลุ่มการเชื่อมต่อฐานข้อมูลที่เปิดค้างไว้ เพื่อหลีกเลี่ยงการเสียเวลาสร้างและปิดการเชื่อมต่อใหม่ทุกครั้งที่ต้อง
โหลดข้อมูล ระบบจะบริหารจัดการการเชื่อมต่ออย่างมีประสิทธิภาพ

3.3.5.14. ระบบไม่ต้องเก็บข้อมูลสถานะของผู้ใช้ (Stateless Authentication) เช่น
session บนฝั่งเซิร์ฟเวอร์ แต่ใช้ JSON Web Token (JWT) เพื่อจัดการการยืนยันตัวตนและการอนุญาต
(authentication & authorization) แทนและสามารถกำหนดเวลาหมดอายุของ Token ได ้

3.3.5.15. ต้องแยกความเป็นเจ้าของข้อมูล (Data Ownership) โดยมีคุณสมบัติอย่าง
น้อยดังนี้

1) แต่ละ Service ย่อยต้องเป็นเจ้าของ Database ของตัวเอง
2) ห้ามแชร์ Database โดยตรงระหว่าง Services

หน้า 10 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.3.5.16. ระบบต้องออกแบบตามแนวคิด Event-Driven Architecture (EDA) โดย
ให้บริการต่าง ๆ ภายในระบบสามารถสื่อสารกันผ่านการส่งเหตุการณ์ (Event) เช่น เมื่อมีการเปลี่ยนแปลง
ข้อมูลสำคัญในบริการหนึ่ง ระบบต้องสามารถสร้างและส่งเหตุการณ์ (Event) ไปยังระบบกลาง (Message
Broker) เช่น RabbitMQ, Apache Kafka หรือเทคโนโลยีอ่ืนที่มีความสามารถดีกว่า ที่ทำหน้าที่จัดการการส่ง
ต่อเหตุการณ์นี้ไปยังบริการอื่น ๆ ที่เกี่ยวข้องได้ เพื่อให้บริการปลายทางสามารถนำเหตุการณ์ดังกล่าวไป
ประมวลผลต่อได้ เช่น การแจ้งเตือนผู้ใช้ การอัปเดตข้อมูลเชิงสถิติ หรือกระบวนการอื่น ๆ ที่เกี่ยวข้อง ทั้งนี้
ผู้รับจ้างสามารถเลือกเทคโนโลยีหรือเครื่องมือที่เหมาะสม โดยต้องมั่นใจว่าโครงสร้างงานรองรับการขยาย
ระบบ (Scalability) และการสื่อสารแบบแยกส่วน (Decoupling) ได้อย่างมีประสิทธิภาพ

3.3.5.17. รักษาความสม่ำเสมอของเวอร์ชันและคุณภาพโค้ด (Keep Code at a
Similar Level of Maturity) ในแต่ละ Service ย่อย เช่น user-service, auth-service ควรใช้เวอร์ชัน
ของ Framework และไลบรารีที่สอดคล้องกัน โดยมีข้อกำหนดดังนี้

1) ให้ใช้เวอร์ชันล่าสุดที่เสถียรและอยู่ในระยะ Long Term Support (LTS)
2) ให้ใช้เฉพาะ ไลบรารีหรือแพ็กเกจที ่เป็น Official หรือได้รับการ

รับรองจากผู้พัฒนา Framework เท่านั้น เช่น Spring Official, Node.js Foundation, Python PyPI Verified
3) หลีกเลี่ยงการใช้ไลบรารีที่ไม่ได้รับการดูแล หรือมีอัตราการอัปเดตต่ำ

(Stale Repository)
4) ต ้องม ีระบบตรวจสอบช่องโหว ่ของไลบราร ี (Dependency

Scanning) เช่น OWASP Dependency-Check, Snyk หรือ GitHub Dependabot
3.3.5.18. แยกกระบวนการ Build และ Deploy สำหรับแต่ละ service ย่อย และ

ต้องมี Pipeline สำหรับการ Build และ Deploy ของตนเอง เช่น user-service, notification-service, และ
reporting-service ควรมีข้ันตอนการพัฒนาและนำขึ้นระบบที่แยกจากกันอย่างชัดเจน สำหรับ environment dev

3.3.5.19. รองรับการทำ Logging แบบรวมศูนย์ (Centralized Logging) โดยมี
คุณสมบัติอย่างน้อยดังนี้

1) ทุก Service ย่อยต้องส่ง Log ไปยังระบบกลาง เช่น EFK (Elasticsearch,
Fluentd, Kibana) หรือที่ดีกว่า

2) ต้องสามารถติดตาม Request และ Debug ได้แบบ End-to-End
3) ต้องมีการจัดเก็บ Log แบบเป็นระบบ (Log Archival) พร้อม

สามารถเรียกดูย้อนหลังได้ตามระยะเวลาที่กำหนด เช่น 90 วัน
4) ต้องมีการกำหนดนโยบายการหมุนเวียน Log (Log Rotation)

อัตโนมัติ เพ่ือควบคุมขนาดพื้นที่จัดเก็บ เช่น รายวัน หรือเมื่อมีขนาดเกินกำหนด
5) ใช้แนวทางการพัฒนาแอปพลิเคชันที่มีความทนทานต่อความล้มเหลว

(Resiliency Patterns) โดยออกแบบและพัฒนาแอปพลิเคชันให้สามารถทำงานต่อได้ แม้จะเกิดปัญหา
บางส่วน เช่น ระบบบางส่วนล่มหรือใช้งานไม่ได้ เพ่ือให้ผู้ใช้งานยังสามารถใช้บริการได้ต่อเนื่อง ไม่สะดุด และมี
คุณสมบัติอย่างน้อยดังนี้ เช่น รองรับ Circuit Breaker, Retry, Fallback ตามลักษณะของแต่ละ Service

หน้า 11 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

ผู้รับจ้างต้องออกแบบกระบวนการทำงานแบบ DevSecOps เพื่อให้การพัฒนา ทดสอบ และนำส่งระบบ
สามารถดำเนินการได้แบบต่อเนื่อง (Continuous) และควบคู่กับการตรวจสอบความปลอดภัย

3.4. ผู้รับจ้างต้องออกแบบกระบวนการทำงานแบบ DevSecOps เพื่อให้การพัฒนาทดสอบ และนำส่ง
ระบบสามารถดำเนินการได้แบบต่อเนื่อง (Continuous) และควบคู่กับการตรวจสอบความปลอดภัยโดยต้อง
นำแนวคิด Shift Left มาใช้ตั้งแต่ระยะเริ่มต้นของวงจรชีวิตการพัฒนา (SDLC) โดยมีคุณสมบัติอย่างน้อยดังนี้

3.4.1. ต้องมีการออกแบบ Workflow หรือ Pipeline ที่ประกอบด้วยขั้นตอนอย่างน้อยดังนี้

3.4.1.1. ระบบต้องรองรับการจัดการเวอร์ชันของซอร์สโค้ด (Version Control) และ
การตรวจสอบการเปลี่ยนแปลง โดยมีกระบวนการอย่างน้อย เช่น

1) ผู้รับจ้างทำการ commit โค้ดไปยังระบบ version control เช่น Git
หรือเทียบเท่า โดยแต่ละงานแยกเป็น branch ของตัวเอง จากนั ้นให้ผู ้ที ่มีประสบการณ์ เช่น Senior
Developer เป็นผู้ตรวจสอบโค้ด (Code Review) ก่อนทำการ merge เข้าสู่ branch หลัก เช่น master หรือ
main เพ่ือช่วยควบคุมคุณภาพและลดความผิดพลาด ก่อนส่งงานเข้าสู่ขั้นตอนถัดไปใน pipeline

2) ผู้รับจ้างต้องจัดการการพัฒนาระบบโดยใช้แนวทาง Git Flow ในการ
ควบคุมเวอร์ชันและการจัดการ branch โดยมีการกำหนดชื่อ branch ตามมาตรฐานเพื่อแยกการทำงานแต่ละ
ประเภทอย่างชัดเจน เพ่ือให้สามารถบริหารจัดการโค้ดได้อย่างเป็นระบบ และลดความเสี่ยงจากความผิดพลาด

3.4.1.2. การวิเคราะห์ความปลอดภัยและคุณภาพของซอร์สโค้ด (Static Code
Analysis) ผู้รับจ้างต้องดำเนินการวิเคราะห์ซอร์สโค้ดต้นฉบับ (Source Code) โดยใช้เครื่องมือวิเคราะห์โค้ด
แบบสถิต (Static Analysis Tool) ที่สามารถตรวจสอบช่องโหว่ด้านความปลอดภัย ข้อผิดพลาดเชิงตรรกะ
และปัญหาคุณภาพของโค้ดได้อย่างครอบคลุม โดยมีข้อกำหนดอย่างน้อยดังนี้

1) คุณสมบัติของเครื่องมือวิเคราะห์ที่ใช้ต้องมีความสามารถอย่างน้อย
ดังต่อไปนี้

1.1) ตรวจจับช่องโหว่ความปลอดภัย (Security Vulnerabilities)
จุดอ่อนของโค้ด (Code Smells) และข้อผิดพลาด (Bugs)

1.2) วิเคราะห์ความซ้ำซ้อนของโค้ด (Code Duplication) ความ
ซับซ้อนเชิงตรรกะ (Cognitive Complexity) และ สัดส่วนโค้ดที่ถูกทดสอบโดย Unit Test (Unit Test
Coverage)

1.3) สร ้างรายงานผลการว ิ เคราะห ์ และสามารถตรวจสอบ
ย้อนหลังได้ (Audit Trail)

1.4) รองรับภาษาโปรแกรมที่ใช้ในระบบ เช่น Java, JavaScript, Python, C#
1.5) สามารถกำหนดเกณฑ์การผ่าน/ไม่ผ่าน (Quality Gate) ได้อย่างชัดเจน

3.4.1.3. ผู้รับจ้างต้องตรวจสอบไลบรารีและไฟล์ dependencies ที่นำมาใช้ในระบบ
อย่างสม่ำเสมอ เพื่อตรวจหาช่องโหว่หรือความเสี่ยงด้านความปลอดภัยที่อาจมีอยู่ เช่น การใช้ OWASP
Dependency-Check หรือเครื่องมือเทียบเท่า โดยมีเป้าหมายเพื่อป้องกันไม่ให้โค้ดที่มีความเสี่ยงถูกนำไปใช้
งานในระบบ ซึ่งอาจส่งผลต่อความปลอดภัยหรือเสถียรภาพของระบบในอนาคต

หน้า 12 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.4.1.4. ผู้รับจ้างต้องทำการ compile และสร้างแอปพลิเคชัน (build) ตามขั้นตอน
มาตรฐานที่กำหนด โดยในกระบวนการนี้ต้องมีการนำแนวทางการเขียนโค้ดอย่างปลอดภัย (secure coding
practices) มาใช้ เช่น การตรวจสอบความถูกต้องของข้อมูลที่ป้อนเข้ามา (input validation) การเข้ารหัส
ข้อมูลที่สำคัญ (data encryption) และการจัดการข้อผิดพลาด (error handling) อย่างรัดกุม เพื่อช่วยลด
ความเสี่ยงด้านความปลอดภัย และป้องกันไม่ให้เกิดปัญหาซ้ำซ้อนหรือกระทบระบบในอนาคต

3.4.1.5. ผู้รับจ้างต้องจัดให้มีระบบสร้างแอปพลิเคชันแบบอัตโนมัติ (auto build) ซึ่ง
เชื่อมโยงกับกระบวนการพัฒนา เช่น เมื่อมีการ commit หรือ merge โค้ด ระบบจะทำการ build แอปพลิเค
ชันโดยอัตโนมัติ ทั้งนี้ pipeline ที่ออกแบบต้องครอบคลุมขั้นตอนตามความต้องการที่ได้เก็บรวบรวมจากผู้
ว่าจ้าง (ในขั้นตอน Requirement Gathering)

3.4.1.6. ผู้รับจ้างต้องจัดให้มีการทดสอบระบบแบบอัตโนมัติ (automated testing)
เพื่อยืนยันว่าฟังก์ชันแต่ละส่วนทำงานได้ถูกต้อง และการแก้ไขหรืออัป เดตโค้ดใหม่ไม่ก่อให้เกิดช่องโหว่หรือ
ข้อผิดพลาดใหม่ โดยต้องมีการทดสอบในสองระดับ คือ ตรวจสอบการทำงานของแต่ละฟังก์ชันหรือโมดูลย่อย
อย่างละเอียด(Unit Test) ตรวจสอบการทำงานร่วมกันระหว่างโมดูลหรือระบบย่อย(Integration Test)
เพ่ือให้มั่นใจว่าการเชื่อมต่อระหว่างส่วนต่าง ๆ ของระบบเป็นไปอย่างถูกต้อง

3.4.1.7. ผู ้ร ับจ ้างต ้องดำเน ินการสแกน Container Image เพื ่อหาช ่องโหว่
(Vulnerability Scan) ด้วยเครื่องมือที่เหมาะสม เช่น Clair, Trivy หรือเทียบเท่า ก่อนนำไป Deploy

3.4.1.8. ไม่อนุญาตให้นำ Container Image ที่พบช่องโหว่ระดับรุนแรง (Critical
Severity) หรือสูง (High Severity) ไปใช้งานในสภาพแวดล้อมจริงโดยไม่ได้รับการแก้ไขหรืออนุมัติจากผู้ว่าจ้าง

3.4.1.9. ผู้รับจ้างต้องดำเนินการทดสอบความปลอดภัยของแอปพลิเคชันในระหว่างที่
ระบบทำงานจริง (DAST) เพ่ือค้นหาช่องโหว่ที่อาจเกิดข้ึนในขั้นตอน Runtime

3.4.1.10. รับจ้างต้องดำเนินการตรวจสอบไฟล์ IaC เช่น Terraform, Ansible,
Kubernetes YAML หรือเทียบเท่า เพ่ือค้นหาความผิดพลาดในการตั้งค่าที่อาจเป็นจุดเสี่ยงด้านความปลอดภัย
(Misconfigurations)

3.4.1.11. ผู้รับจ้างต้องออกแบบให้ Pipeline สำหรับการพัฒนาและนำส่งโค้ด มี
ขั้นตอนการตรวจสอบความปลอดภัยครบถ้วนในแต่ละข้ันตอนที่เก่ียวข้อง

3.4.1.12. ต้องกำหนด Gate (จุดตรวจสอบบังคับ) ให้โค้ดและ Artifact ทั้งหมดต้อง
ผ ่านการตรวจสอบความปลอดภัยตามเกณฑ์ท ี ่กำหนดก่อนเท่าน ั ้น จ ึงจะสามารถ Deploy ไปยัง
Environment ถัดไปได ้

3.4.1.13. ผู ้ร ับจ้างต้องดำเนินการนำโค้ดหรือแอปพลิเคชันขึ ้นสู ่ Production
Environment เฉพาะโค้ดที่ผ่านการตรวจสอบคุณภาพและความปลอดภัยในทุกขั้นตอน และได้รับอนุมัติจาก
ผู้ว่าจ้างแล้วเท่านั้น

3.4.1.14. มีพื้นที่จัดเก็บไฟล์ build (Artifact Repository) ที่มีคุณสมบัติรองรับการ
รักษาความมั่นคงปลอดภัยของข้อมูล (Security) การควบคุมการเข้าถึง การตรวจสอบย้อนหลัง และสามารถ
พิสูจน์หรือนำเสนอได้ว่าเป็นระบบที่น่าเชื่อถือ

หน้า 13 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.4.1.15. กระบวนการ Deploy ต้องดำเนินการผ่าน Pipeline อัตโนมัติขึ ้นสู่
environment ต่างๆ ที่ควบคุมกระบวนการ Deploy อย่างปลอดภัย (Secure Deployment Process) ผู้รับ
จ้างต้องมีการนำข้อกำหนดการปรับใช้ระบบ (Deployment Strategies) เพื่อให้การนำซอฟต์แวร์ขึ้นระบบ
Production เป็นไปอย่างมีประสิทธิภาพ ปลอดภัย และสามารถควบคุมความเสี่ยงได้อย่างเหมาะสม ผู้รับจ้าง
ต้องเสนอและดำเนินการ Deployment Strategy อย่างน้อยหนึ่งรูปแบบต่อไปนี้ ตามลักษณะงานที่เหมาะสม

1) Blue/Green Deployment ใช้เพื่อเปลี่ยนระบบไปยังเวอร์ชันใหม่
โดยไม่กระทบผู้ใช้งาน และสามารถย้อนกลับไปเวอร์ชันเดิมได้ทันทีหากพบปัญหา

1.1) เป็นการเตรียมระบบขึ้น 2 ชุด คือ ชุดปัจจุบัน (Blue) และ
ชุดใหม่ (Green) โดยไม่กระทบกับผู้ใช้งานระหว่างเตรียมระบบใหม่

• เมื ่อระบบใหม่ทดสอบเรียบร้อยแล้ว จะทำการ สลับ
ผู้ใช้งานมายัง Green ทันท ี

• หากพบปัญหา ต้องสามารถ ย้อนกลับไปใช้ Blue ได้อย่าง
รวดเร็ว (Rollback)

• Canary Deployment ใช้เพื่อทยอยปล่อยระบบใหม่ให้
ผู้ใช้งานทีละกลุ่ม เพ่ือตรวจสอบความเสถียรก่อนเปิดให้ผู้ใช้ทั้งหมด

• ปล่อยระบบใหม่ให้ กลุ่มผู้ใช้งานจำนวนน้อย เช่น 10% - 25%
ใช้งานก่อน

• ตรวจสอบว่าระบบใหม่ไม่มีปัญหา จึงค่อย ๆ ขยายการใช้
งานไปยังผู้ใช้ทั้งหมด

• ต้องสามารถ หยุดและถอยกลับ (Rollback) ได้ทันทีหาก
เกิดข้อผิดพลาด

1.2) A/B Testing ใช้เพื่อทดสอบและเปรียบเทียบประสิทธิภาพ
ของฟีเจอร์หรือการออกแบบระหว่างเวอร์ชัน A และ B กับผู้ใช้งานจริง

• ใช้สำหรับการทดลองฟีเจอร์ใหม่ หรือเปรียบเทียบการ
ออกแบบ (UI/UX) โดย แบ่งกลุ่มผู้ใช้งานเป็นกลุ่ม A และ B

• ต้องสามารถเก็บข้อมูลพฤติกรรมผู้ใช้งานแต่ละกลุ่มเพ่ือ
นำมาวิเคราะห์ก่อนตัดสินใจใช้งานจริง

1.3) Feature Flag Deployment ใช้เพื ่อควบคุมการเปิด-ปิด
ฟีเจอร์ใหม่ได้แบบยืดหยุ่น โดยไม่ต้อง deploy โค้ดใหม่ทุกครั้ง

• ฟีเจอร์ใหม่สามารถ เปิด-ปิดได้แบบ Dynamic โดยไม่
ต้อง Deploy Code ใหม ่

• สามารถเลือกเปิดใช้ฟีเจอร์ใหม่ให้เฉพาะบางกลุ่มผู้ใช้งาน
(เช่น 10%-20%) ได ้

หน้า 14 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

• ต้องมีระบบบริหารจัดการ Feature Flag ที่ปลอดภัย
และต้องลบ Feature Flag ที่ไม่ใช้งานแล้วเสมอ

1.4) Rolling Deployment ใช ้เพ ื ่ออ ัปเดตระบบทีละส ่วน
(Node/Instance) อย่างต่อเนื่อง โดยไม่ทำให้ระบบหยุดให้บริการ

• ค่อย ๆ อ ัปเดตระบบใหม่ ท ีละ Node/Instance
แบบต่อเนื่อง โดยไม่หยุดให้บริการทั้งหมด

• ต้องสามารถ ตรวจสอบสถานะและ Rollback ได้ทันที
หากพบปัญหา

1.5) Multi-Service Deployment ใช้เพื่อปรับใช้หลาย Service
พร้อมกันอย่างเป็นระบบ โดยคำนึงถึง Dependency ระหว่าง Service ที่เก่ียวข้อง

• ใช้สำหรับระบบที ่ประกอบด้วยหลาย Service ต้อง
Deploy พร้อมกันเป็นชุดเดียว

• ต้องจัดทำแผนลำดับการ Deploy อย่างชัดเจน เนื่องจาก
บาง Service อาจขึ้นอยู่กับ Service อ่ืน (Dependency)

• ต้องมีแผนสำรองหากบาง Service ล้มเหลว โดยไม่ให้
กระทบระบบทั้งหมด

3.4.1.16. ต้องสามารถตรวจสอบประวัติการ Deploy ได้ครบถ้วน (Audit Trail) ระบุ
อย่างน้อยได้ว่า ใคร Deploy หรือ Deploy อะไร หรือ เวลาใด

3.4.1.17. ผู ้รับจ้างต้องดำเนินการติดตั ้งและกำหนดค่าระบบ Monitoring และ
Logging สำหรับเฝ้าระวังสถานะระบบและเหตุการณ์ความผิดปกติ รวมถึงพฤติกรรมที่อาจเป็นภัยคุกคามทาง
ไซเบอร์ โดยระบบที่นำมาใช้ต้องมีคุณสมบัติอย่างน้อยดังนี้

1) สามารถรวบรวมและแสดงผลข้อมูล Log และข้อมูล Monitoring
จากทุกองค์ประกอบของระบบ (Application, Database, Server, Network)

2) สามารถกำหนดเกณฑ์แจ้งเตือน (Alert) กรณีพบเหตุการณ์ผิดปกติ
เช่น การใช้งานระบบผิดปกติ พฤติกรรมเสี่ยง การพยายามบุกรุกระบบ

3) สามารถจัดเก็บ Log อย่างปลอดภัยและตรวจสอบย้อนหลังได้ตาม
นโยบายของผู้ว่าจ้าง

3.4.1.18. ผู้รับจ้างต้องจัดให้มีระบบตอบสนองเหตุการณ์อัตโนมัติในโครงการ โดย
ต้องมีคุณสมบัติอย่างน้อยดังนี้

1) สามารถแจ้งเตือน (Alert) ไปยังเจ้าหน้าที ่ผู ้ด ูแลระบบเมื ่อเกิด
เหตุการณ์ผิดปกติหรือภัยคุกคามท่ีตรวจพบ เช่น ผ่านอีเมล, Line, SMS, หรือระบบแจ้งเตือนท่ีใช้งานอยู่

2) สามารถดำเนินการกักกัน (Quarantine) อุปกรณ์หรือบริการที่ตรวจ
พบความเสี่ยง เพ่ือลดความเสียหายที่อาจเกิดข้ึน

หน้า 15 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3) สามารถดำเนินการ Rollback ระบบหรือข้อมูลกลับไปยังสถานะที่
ปลอดภัยก่อนหน้าอัตโนมัติ หากกำหนดไว้ในแผนงานหรือนโยบาย

4) ระบบตอบสนองอัตโนมัติต้องกำหนดนโยบายและขอบเขตที่ชัดเจน
และผู้รับจ้างต้องทดสอบการทำงานและจัดทำคู ่มือการปฏิบัติ (Incident Response Playbook) เพ่ือ
ประกอบการตรวจสอบและยืนยันคุณภาพการตอบสนอง

3.4.2. การออกแบบระบบต้องมีกลไกการตรวจสอบความปลอดภัยทั้งก่อนและระหว่างการ
พัฒนา ตัวอย่างเช่น การตรวจสอบโค้ดอัตโนมัติเมื่อมีการ Commit (โดยข้อความ Commit ต้องเป็นไปตาม
มาตรฐาน CI/CD) หรือ Merge การตรวจสอบช่องโหว่ของไลบรารีหรือ Dependency ที่ใช้งาน และการ
ตรวจสอบไฟล์ Configuration เช่น YAML/JSON เพ่ือป้องกันการตั้งค่าท่ีไม่ถูกต้อง

3.4.3. Workflow ที่ออกแบบต้องสามารถทำงานร่วมกับระบบควบคุมเวอร์ชันของ Source
Code เช่น Git หรือเทียบเท่า และสามารถเชื่อมโยงกับระบบทดสอบแบบอัตโนมัติ เพื่อให้เกิดการ Deploy
ระบบอย่างต่อเนื่องโดยไม่ต้องทำด้วยมือ

3.4.4. ต้องสามารถตั ้งค่าตัวกรอง (Gate) เพื ่อไม่ให้โค้ดที ่มีความเสี ่ยงร้ายแรง (Critical
Vulnerability) ถูกนำไป Deploy โดยไม่ได้รับการตรวจสอบ

3.4.5. ต้องสามารถตรวจสอบและบันทึกผลการทำงานของ Pipeline แต่ละรอบได้ เช่น บันทึก
ว่าใคร Deploy อะไร เมื่อใด และ ผลการทดสอบเป็นอย่างไร

3.5. ผู้รับจ้างต้องวางแผนและดำเนินการด้านความปลอดภัยสำหรับการใช้งาน Container Technology
เช่น Docker หรือเทียบเท่า ให้เป็นส่วนหนึ่งของกระบวนการ DevSecOps โดยต้องครอบคลุมประเด็นด้าน
ความปลอดภัย ดังต่อไปนี้

3.5.1. ต้องมีข้ันตอนการตรวจสอบความปลอดภัยของ Container Image ที่ใช้ทั้งในขั้นตอนการ
พัฒนาและการนำขึ้นใช้งานจริง

3.5.2. ต้องใช้ Container Image ที่มาจากแหล่งที่เชื่อถือได้ (Trusted Registry) เท่านั้น

3.5.3. ต้องมีการสแกน Container Image เพ่ือหาช่องโหว่ (Vulnerability Scan) ก่อนนำไปใช้
งาน เช่น Common Vulnerabilities and Exposures (CVE), Misconfiguration

3.5.4. ผู้รับจ้างต้องจัดทำ Dockerfile หรือ docker-compose.yml ให้สอดคล้องกับแนวทาง
ด้านความปลอดภัยที่เหมาะสม โดยมีรายละเอียดอย่างน้อยดังต่อไปนี้

3.5.4.1. รัน Container ด้วยสิทธิ์ที่น้อยที่สุด โดย Container ต้องไม่รันด้วย root
โดยตรง ให้สร้างและใช้ ผู้ใช้ (User) ใหม่ใน container เพ่ือลดความเสี่ยงด้านความปลอดภัย

3.5.4.2. ใช้ COPY แทน ADD เมื่อไม่จำเป็น
3.5.4.3. ลดจำนวน Layer โดยรวมคำสั่งหลาย ๆ คำสั่งเข้าด้วยกัน
3.5.4.4. จัดเรียงคำสั่งใน Dockerfile ให้เหมาะสมกับการ Cache เช่น คำสั่งที่เปลี่ยน

บ่อยให้อยู่ล่างสุด เพ่ือให้ Docker สามารถใช้ layer cache ได้อย่างมีประสิทธิภาพ

หน้า 16 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.5.4.5. ใช้ Official Image จาก Docker Hub เพื่อความปลอดภัยและการอัปเดตอ
ย่างสม่ำเสมอ ให้เลือกใช้งาน Image ที่เป็นทางการ (Official) เท่านั้น เช่น node:14-alpine กำหนดเวอร์ชัน
ของ Image อย่างชัดเจน ห้ามใช้ latest tag ให้ระบุเวอร์ชันที่แน่นอน เช่น node:14.17.0-alpine3.13
เพ่ือความสามารถในการ reproduce และลดความเสี่ยงจากการเปลี่ยนแปลงที่ไม่คาดคิด

3.5.4.6. ใช้ Multi-Stage Build ผู้รับจ้างต้องใช้เทคนิค Multi-Stage Build ในการ
สร้าง Docker Image โดยแยกขั้นตอนการ Build เช่น Compile, Build Library ออกจากขั้นตอนสำหรับ
Production เพ่ือลดขนาดของ Image ที่นำไปใช้งานจริง และลดไฟล์หรือ Package ที่ไม่จำเป็นในขั้นตอนการ
ทำงานจริง

3.5.4.7. ต้องกำหนดไฟล์ .dockerignore เพื่อยกเว้นไฟล์หรือโฟลเดอร์ที่ไม่จำเป็น
ไม่ให้ถูกเพิ่มเข้าไปใน Image เช่น node_modules/, npm-debug.log หรือไฟล์ที่เกี ่ยวข้องกับ Local
Environment เพ่ือป้องกันขนาด Image โตโดยไม่จำเป็น

3.5.4.8. ต้องกำหนดค่าพารามิเตอร์ เช่น Path, Token, URL ผ่าน Environment
Variables แทนการเขียนค่าคงที่ (Hardcode) ภายใน Image เพื่อให้สามารถเปลี่ยนแปลงค่าต่าง ๆ ได้ง่าย
เมื่อนำไปใช้ในแต่ละสภาพแวดล้อม (Environment)

3.5.4.9. ต้องกำหนด Label ให้กับ Image เช่น maintainer, version, description
เพ่ือช่วยให้สามารถบริหารจัดการ Image ได้ง่ายขึ้นในระยะยาว และช่วยติดตามข้อมูลสำคัญเก่ียวกับ Image

3.5.4.10. สแกนหาช่องโหว่ใน Image ก่อนใช้งานจริงก่อนนำ Docker Image ไปใช้
งานในระบบจริง ผู้รับจ้างต้องสแกนหาช่องโหว่ (Vulnerability Scan) ด้วยเครื่องมือที่เป็นที่ยอมรับ เช่น
docker scan, Trivy หรือเครื่องมืออ่ืนที่เทียบเท่า และต้องแนบรายงานผลการสแกนเพ่ือประกอบการตรวจสอบ

3.5.4.11. ต้องปฏิบัติตามแนวทางการตั้งค่าความปลอดภัยอย่างน้อยระดับ Level 1
ของ CIS Docker Benchmark โดยมีข้อกำหนดหลักท่ีต้องปฏิบัติ เช่น

1) ต ้องกำหนดขีดจำก ัดการใช ้ CPU และ Memory ให ้ก ับแต ่ละ
Container อย่างเหมาะสม เพื่อลดความเสี่ยงที่ Container ใด ๆ จะใช้ทรัพยากรเกินความจำเป็นและส่งผล
กระทบต่อระบบโดยรวม

2) ต้องกำหนดให้ Container ทุกตัวส่ง Log ออกไปในรูปแบบที่เหมาะสม
เช่น JSON และต้องเชื่อมต่อกับระบบ Logging กลาง เช่น EFK Stack หรือเทียบเท่า เพ่ือให้สามารถเก็บ Log
ตรวจสอบย้อนหลัง และทำ Audit Trail ได ้

3) ห้าม Mount Directory ที่อาจถูกนำไปใช้โจมตีหรือดัดแปลง Docker
Engine โดยเด็ดขาด เช่น /var/run/docker.sock หรือ Directory System อ่ืน ๆ ที่สำคัญ

3.5.5. ห้ามฝัง Secrets, Token, User, Password ไว้ใน Dockerfile หรือ Image

3.5.6. ต้องใช้ว ิธ ีการจัดเก็บ Secrets อย่างปลอดภัย เช ่นผ่าน Secret Manager หรือ
Environment Variables ที่แยกจาก Source Code

3.5.7. ต้องมีการจำกัดสิทธิ์ของ Container ที่รันอยู่ เช่น ตั้งค่า read-only filesystem การปิด
การใช้งานการยกระดับสิทธิ์(privilege escalation)

หน้า 17 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.5.8. ต้องมีแนวทางป้องกัน Container Escape เช่น เปิดใช้งาน AppArmor, SELinux หรือ
Seccomp Profiles (ถ้าหากระบบนั้นรองรับ)

3.5.9. ต้องสามารถระบุได้ว่า Container ใดกำลังทำงาน อ้างอิงกับเวอร์ชันที่ผ่านการทดสอบแล้ว

3.5.10. Container ต้องถูกตรวจสอบสถานะและจัดเก็บ Log อย่างเหมาะสม เพื่อให้สามารถ
ติดตามพฤติกรรมผิดปกติได้

3.5.11. Log ต้องสามารถเชื่อมโยงกับระบบ Monitoring ของ DevSecOps (เช่น Alert เมื่อ
Container ล่มหรือทำงานผิดปกติ)

3.5.12. ขั้นตอน Build Container Image ต้องผสานกับ Pipeline ของ DevSecOps โดยทำการ
ตรวจสอบสุขภาพความปลอดภัยอัตโนมัติก่อน Deploy

3.5.13. ระบบต้องสามารถระงับการ Deploy Image ที่ไม่ผ่านเกณฑ์ความปลอดภัย (เช่น ถ้าพบ
ช่องโหว่ระดับวิกฤติ)

3.5.14. ต้องจัดทำรายงานสรุปผลการตรวจสอบ Container Security ที่ดำเนินการในแต่ละรอบ
เช่น รายงานการสแกน Image การตั้งค่าที่ใช้ การป้องกันการรันด้วย Root และ ต้องสามารถตรวจสอบ
ย้อนหลังได้ผู้รับจ้างต้องดำเนินการจัดเก็บ Source Code สคริปต์สำหรับจัดการฐานข้อมูล และไฟล์คอนฟิก
ทั้งหมดไว้ในระบบควบคุมเวอร์ชันที่รองรับการทำงานแบบทีม สามารถตรวจสอบย้อนหลัง (Audit) ได้ และ
สามารถบูรณาการกับกระบวนการพัฒนาแบบต่อเนื่อง (CI/CD Pipeline) ได้อย่างเหมาะสม

3.6. ผู้รับจ้างต้องออกแบบการตรวจสอบความปลอดภัยของซอร์สโค้ด (Secure Code Review) โดยใช้
เครื่องมือหรือวิธีการที่สามารถ ดังนี้

3.6.1. ทำการวิเคราะห์โค้ดต้นฉบับโดยอัตโนมัติ (Automated Static Code Analysis) ได้ทั้ง
สำหรับภาษาโปรแกรมที่ใช้ในการพัฒนา เช่น JavaScript, Python หรือภาษาอื่นท่ีเกี่ยวข้อง

3.6.2. ตรวจจับจุดอ่อนด้านความปลอดภัย (Security Vulnerabilities) ได้ครอบคลุมตาม
แนวทาง OWASP Top 10 เช่น SQL Injection, Cross-Site Scripting (XSS), Broken Authentication
และอ่ืน ๆ

3.6.3. แสดงระดับความรุนแรงของปัญหา (Severity Levels) และสามารถจัดลำดับความสำคัญ
เพ่ือแก้ไขได ้

3.6.4. วิเคราะห์คุณภาพโค้ด (Code Quality) เช่น ความซับซ้อนของโค้ด (Code Complexity),
Code Duplication และ Code Smell

3.6.5. สร้างรายงานอัตโนมัติ (Automated Reports) ที่สามารถส่งมอบได้ในรูปแบบ PDF หรือ
HTML โดยระบุปัญหาพร้อมคำแนะนำในการปรับปรุง

3.6.6. รองรับการทำงานแบบต่อเนื่อง (Continuous Integration) กับระบบพัฒนา เช่น GitLab
หรือเทียบเท่า เพ่ือให้สามารถทำ Secure Code Review ทุกครั้งที่มีการ Commit หรือ Merge โค้ด

หน้า 18 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.6.7. รองรับการตรวจสอบ Source Code ทั้งฝั ่ง Frontend และ Backend รวมถึงโค้ดที่
เกี่ยวข้องกับการเชื่อมต่อ API หรือฐานข้อมูล

3.6.8. เครื่องมือหรือแนวทางที่เลือกใช้จะต้องเป็นที่ยอมรับในอุตสาหกรรม และผลการวิเคราะห์
ต้องสามารถตรวจสอบย้อนหลังได้ เพ่ือประกอบการประเมินผลและรับรองคุณภาพของระบบ

3.7. ผู้รับจ้างต้องดำเนินการจัดเก็บ Source Code สคริปต์สำหรับจัดการฐานข้อมูล และไฟล์คอนฟิก
ทั้งหมดไว้ในระบบควบคุมเวอร์ชันที่รองรับการทำงานแบบทีม สามารถตรวจสอบย้อนหลัง (Audit) ได้ และ
สามารถบูรณาการกับกระบวนการพัฒนาแบบต่อเนื่อง (CI/CD Pipeline) ได้อย่างเหมาะสม โดยมีคุณสมบัติ
อย่างน้อยดังนี ้

3.7.1. รองรับการทำงานแบบ Branch/Merge

3.7.2. จัดเก็บประวัติการเปลี่ยนแปลงของโค้ดและฐานข้อมูลแบบละเอียด

3.7.3. มีระบบตรวจสอบความแตกต่างของเวอร์ชัน (Diff)

3.7.4. รองรับการ Rollback กรณี Migration ผิดพลาด

3.7.5. รองรับการแยก Environment สำหรับการ Deploy

3.7.6. มีระบบกำหนดสิทธิ์การเข้าถึงของผู้พัฒนา

3.7.7. บันทึกเหตุการณ์หรือ Log การเปลี่ยนแปลงที่สำคัญ

3.8. ผู้รับจ้างต้องออกแบบให้สามารถจัดการข้อมูลแบบ Cache เพ่ือเพ่ิมประสิทธิภาพในการเข้าถึงข้อมูล
โดยต้องรองรับการทำงานต่อเนื่อง (High Availability) และสามารถจัดการกับการทำงานที่มีปริมาณสูงได้

3.9. ผู้รับจ้างต้องออกแบบให้รองรับการเข้ารหัสข้อมูลตามมาตรฐานความปลอดภัยระดับสากล เช่น TLS 1.2

หรือสูงกว่า และต้องรองรับการพิสูจน์ตัวตนแบบ Token-Based เพ่ือป้องกันการโจมตีและการเข้าถึงโดยไม่ได้
รับอนุญาต

3.10. ผู้รับจ้างต้องออกแบบการบริหารการจัดการสิทธิ์รวมถึงจัดทำตารางกำหนดสิทธิของผู้ใช้งาน
(User Authorization Matrix) ในแต่ละ ระบบงานสามารถนำออก (Export) มาเป็นรูปแบบไฟล์ PDF และ
รูปแบบไฟล์อิเล็กทรอนิกส์อื่น ๆ ที่เหมาะสม เช่น Word, Excel, CSV, JSON และ Text File เป็นต้น และ
Print ได้ และสามารถเลือกนำออก ข้อมูลดังกล่าวเป็นความถี่รายเดือน รายปี หรือตามที่สำนักงานการตรวจ
เงินแผ่นดินกำหนดได้

3.11. ผู้รับจ้างต้องออกแบบและจัดทำโครงสร้างพื้นฐานของระบบโดยใช้แนวทาง Infrastructure as
Code (IaC) เพื่อให้สามารถสร้าง ติดตั้ง และปรับขนาด (Provision & Scale) สภาพแวดล้อมได้โดยอัตโนมัติ
และสามารถควบคุมเวอร์ชันได้อย่างมีประสิทธิภาพ โดยโครงสร้างพื้นฐานที่พัฒนาด้วย IaC ต้องสามารถสร้าง
ระบบในรูปแบบ Cluster ได้เป็นอย่างน้อย

หน้า 19 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.12. ผู้รับจ้างต้องออกแบบระบบให้สามารถเชื่อมต่อและทำงานร่วมกับเครื่องมือสำหรับตรวจสอบ
ประสิทธิภาพ (Performance Monitoring) และติดตามการทำงานของระบบใน Environment UAT และ
Production โดยเครื่องมือที่เลือกใช้ต้องมีคุณสมบัติดังนี้

3.12.1. ระบบต้องสามารถรองรับการติดตามการทำงานแบบกระจาย (Distributed Tracing)
โดยมีคุณสมบัติอย่างน้อยดังนี้

3.12.1.1. สามารถตรวจสอบและต ิ ดตาม เส ้ นทา งการทำ งานของแต ่ ล ะ
Request/Transaction ที่ผ่านระบบ Microservices หรือส่วนประกอบต่าง ๆ ได้

3.12.1.2. สามารถระบุคอขวดหรือจุดที่เกิดความหน่วง (Latency) แบบ End-to-
End ได ้

3.12.2. รองรับ Real-time Monitoring บน Environment UAT และ Production โดยมี
คุณสมบัติอย่างน้อยดังนี้

3.12.2.1. สามารถตรวจสอบสถานะต่างๆ ได้แบบเรียลไทม์ โดยมีรายละเอียดอย่าง
น้อยดังนี ้

1) สถานะ ของ Service/Component ต่าง ๆ
2) สถานะ CPU
3) สถานะ Memory
4) สถานะ Disk แต่ละ Partition

3.12.2.2. สามารถแจ้งเตือนเมื่อค่าประสิทธิภาพเกินเกณฑ์ที่กำหนด เช่น Response
Time, Error Rate หรือ Resource Utilization

3.12.3. รองรับการทำงานร่วมกับเครื่องมือมาตรฐานอุตสาหกรรม โดยมีคุณสมบัติอย่างน้อยดังนี้

3.12.3.1. ต้องสามารถเชื่อมโยงหรือส่งข้อมูลให้กับระบบ Trace/Monitoring ที่เป็น
มาตรฐาน เช่น Jaeger, Dynatrace หรือเทียบเท่าได้

3.12.3.2. ไม่จำกัดยี่ห้อหรือผลิตภัณฑ์ เพื่อเปิดโอกาสให้สามารถเลือกใช้ Open
Source หรือ Commercial Solution ได้ตามความเหมาะสม

3.12.4. รองรับการบันทึกและตรวจสอบข้อมูลย้อนหลัง (Historical Analysis) โดยมีคุณสมบัติ
อย่างน้อยดังนี ้

3.12.4.1. ผลการมอนิเตอร์ต้องสามารถบันทึกและตรวจสอบย้อนหลังได้
3.12.4.2. ต้องสามารถ Export ข้อมูลหรือเชื่อมต่อกับ Dashboard เช่น Grafana,

Kibana หรือเทียบเท่า เพ่ือให้ผู้ว่าจ้างสามารถเข้าถึงข้อมูลได้

3.12.5. ผู ้รับจ้างต้องออกแบบและกำหนดการเข้าถึงระบบไฟล์และโฟลเดอร์ โดยมีการแบ่ง
เส้นทางการใช้งานและกำหนดกลุ่มผู้ใช้งานให้เหมาะสมกับหน้าที่ความรับผิดชอบและความมั่นคงปลอดภัยของ
ระบบ

หน้า 20 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.12.6. ผู้รับจ้างต้องออกแบบการวางสิทธิ์และบทบาทผู้ใช้ในระบบตาม Role Metric ที่ได้จัดทำ
ในขั้นตอน Requirement Gathering โดยต้องมีรายละเอียดอย่างน้อยดังนี้

3.12.7. การออกแบบโครงสร้างบทบาท (Role Structure) เช่น Role-based Access Control
(RBAC)

3.12.8. การจัดกลุ่มสิทธิ์ (Permission Grouping) เช่น กลุ่มอ่าน กลุ่มเขียน กลุ่มอนุมัติ

3.12.9. การออกแบบการ Mapping ระหว่างบทบาทกับกลุ่มสิทธิ์ เช่น Creator → กลุ่มเขียน +
กลุ่มอนุมัต ิ

3.12.10. การระบุเส้นทางหรือโซนของระบบที่แต่ละบทบาทสามารถเข้าถึง เช่น Content
Repository, Approval Dashboard, Public Portal

3.12.11. การแนบ Diagram หรือแผนผัง Role-Permission Mapping (เช่น Unified Modeling
Language: UML หรือ Diagram ชัดเจนอื่น ๆ) ที ่อธิบายการเชื่อมโยงระหว่างผู ้ใช้ บทบาท สิทธิ ์ และ
ส่วนประกอบของระบบ

3.12.12. การออกแบบทั้งหมดนี้ต้องเป็นไปตามมาตรฐานความมั่นคงปลอดภัยที่เป็นที่ยอมรับ
เช่น หลักสิทธิ์น้อยที่สุด(Least Privilege) หลักการแยกหน้าที่ (Separation of Duties) และต้องสามารถ
ตรวจสอบย้อนหลัง (Audit) ได ้

3.13. ผู้รับจ้างต้องออกแบบและกำหนดการเข้าถึงระบบไฟล์และโฟลเดอร์ โดยมีการแบ่งเส้นทางการใช้
งานและกำหนดกลุ่มผู้ใช้งานให้เหมาะสมกับหน้าที่ความรับผิดชอบและความมั่นคงปลอดภัยของระบบ ซึ่ง
อย่างน้อยต้องมีรายละเอียดดังนี้

3.13.1. การทำ Mapping กลุ่มผู้ใช้และโฟลเดอร์ จัดทำ Mapping ระหว่างกลุ่มผู้ใช้ (User
Group) กับโฟลเดอร์ที่เก่ียวข้อง เช่น

3.13.1.1. กลุ่ม Jenkins Admin → ดูแล /jenkins
3.13.1.2. กลุ ่ม Apache Admin → ดูแล /apache_log, /apache_dump,

/apache_archive
3.13.1.3. กลุ่ม Elastic Admin → ดูแล /elasticdata1, /elasticdata2

3.13.2. การกำหนดสิทธิ์การเข้าถึง กำหนดสิทธิ์ที่เหมาะสม เช่น read,write, execute ตาม
บทบาทหน้าที ่

3.13.3. การจัดเตรียม Script หรือแนวทางสร้าง Group และกำหนดสิทธิ์จัดเตรียม Script เช่น
Shell Script, Ansible Playbook หรือเทียบเท่า เพ่ือให้สามารถปรับปรุงซ้ำได้ในอนาคต (Infrastructure as
Code)

หน้า 21 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.13.4. การออกแบบทั้งหมดนี้ต้องเป็นไปตามมาตรฐานความมั่นคงปลอดภัยที่เป็นที่ยอมรับ เช่น
หลักสิทธิ์น้อยที่สุด(Least Privilege) หลักการแยกหน้าที่ (Separation of Duties) และต้องสามารถ
ตรวจสอบย้อนหลัง (Audit) ได ้

3.14. การออกแบบและจัดการซอร์สโค้ดและ Micro Frontend ผู้รับจ้างต้องออกแบบโครงสร้างคลัง
เก็บซอร์สโค้ด (Source Code Repositories) และการพัฒนาระบบ Frontend ตามหลักการดังต่อไปนี้

3.14.1. การแยกส่วนของซอร์สโค้ดและโดเมนเนม ต้องแยกซอร์สโค้ดของส่วนหน้าบ้าน
(Frontend สำหรับผู้ใช้งานทั่วไป) และส่วนหลังบ้าน (Frontend สำหรับผู้ดูแลระบบ - Admin) ออกจากกัน
อย่างชัดเจน และต้องแยกโดเมนเนม (DNS) สำหรับแต่ละส่วนให้เป็นอิสระจากกัน เช่น portal.example.com
สำหรับผู้ใช้งานทั่วไป และ admin.example.com สำหรับผู้ดูแลระบบ

3.14.2. การใช้แนวคิด Micro Frontend โดย Frontend ต้องถูกแยกออกเป็นโมดูล (Modules)
เช่นเดียวกับการออกแบบ Microservices โดยแต่ละโมดูลต้องสามารถพัฒนา ทดสอบ และ Deploy ได้อย่าง
อิสระ

3.15. การออกแบบและพัฒนาเว็บไซต์ให้มีประสิทธิภาพด้าน Frontend (Frontend Performance
Optimization) ผู้รับจ้างต้องออกแบบและพัฒนาเว็บไซต์ให้สามารถโหลดและแสดงผลได้อย่างรวดเร็ว มี
ประสิทธิภาพสูงส ุดต่อผู ้ใช้งาน โดยต้องพิจารณาใช้แนวทางการเพิ ่มประสิทธิภาพ (Performance
Optimization Techniques) อย่างน้อยดังต่อไปนี้

3.15.1. Compression

3.15.1.1. บีบอัดไฟล์ (HTML, CSS, JS, SVG) ก่อนส่งผ่านเครือข่ายด้วย Gzip หรือ Brotli
3.15.1.2. ลดขนาด Payload และ Network Latency

3.15.2. Selective Rendering / Windowing

3.15.2.1. แสดงเฉพาะองค์ประกอบที่อยู่ในพ้ืนที่มองเห็น (Above the Fold)
3.15.2.2. ใช้ Virtual Scrolling หรือ Lazy Rendering สำหรับรายการที่มีจำนวน

มาก ตามความเหมาะของเนื้อหา (Content) ในแต่ละหน้าจอ
3.15.3. Modular Architecture & Code Splitting

3.15.3.1. แยก JavaScript ออกเป็นโมดูลย่อยเพื่อให้โหลดเฉพาะส่วนที่จำเป็น เช่น
Webpack SplitChunks หรือ ES Modules

3.15.3.2. ลดขนาด Initial JS Bundle
3.15.4. Priority-Based Loading

3.15.4.1. โหลดเฉพาะทรัพยากรสำคัญก่อน เช่น HTML, Critical CSS, JS ที่จำเป็น
3.15.4.2. ใช้เทคนิค อย่างน้อยดังนี้

1) defer เพ่ือโหลด script พร้อมกัน รันทีหลัง HTML
2) async เพ่ือโหลดและรันทันที (ถ้าโหลดเสร็จ)

หน้า 22 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3) preload เพ่ือบอก browser ให้โหลด resource สำคัญล่วงหน้า
4) resource hints เพ่ือบอก browser ให้เตรียมการเชื่อมต่อหรือลิงก์ล่วงหน้า

3.15.5. Dynamic Imports

3.15.5.1. โหลดโมดูลแบบ Lazy ตามการใช้งานจริง เช่น import('module')
3.15.5.2. ลดเวลาโหลดหน้าแรก (TTI – Time to Interactive)

3.15.6. Tree Shaking / Dead Code Removal

3.15.6.1. ตัดโค้ดท่ีไม่ถูกใช้งานออกจาก Final JS Bundle
3.15.6.2. ใช้กับ Bundler เช่น Webpack, Rollup

3.15.7. Pre-Fetching

3.15.7.1. ดึงข้อมูลล่วงหน้าก่อนที่ผู้ใช้งานจะร้องขอจริง เช่น ข้อมูลในหน้า Next Page
3.15.7.2. ใช้ <link rel="prefetch"> หรือ Browser Cache API

3.15.8. Pre-loading / Preconnect / DNS-Prefetch

3.15.8.1. ให้ Browser เตรียมตัวโหลดไฟล์ที่จำเป็นได้เร็วขึ้นสำหรับ CDN, Fonts
และ API Endpoint

3.16. กรณีท่ีผู้รับจ้างมีการพัฒนาการประมวลผลชุดข้อมูล (Batch Processing) โดยต้องมีการออกแบบ
อย่างน้อยดังนี ้

3.16.1. ผู้รับจ้างต้องออกแบบและพัฒนาระบบประมวลผลชุดข้อมูล (Batch Job) ให้สามารถ
ดำเนินการได้อย่างมีเสถียรภาพ มีความยืดหยุ่นต่อปริมาณข้อมูลที่เปลี่ยนแปลง และรองรับการประมวลผล
ขนาดใหญ่ได้อย่างมีประสิทธิภาพ

3.16.2. ระบบ Batch ต้องสามารถทำงานแบบอัตโนมัติ (Automated Scheduling) โดยรองรับ
การตั้งเวลาแบบกำหนดเองได้ (Flexible Scheduling) และรองรับการทำงานซ้ำอัตโนมัติกรณีล้มเหลว
(Automatic Retry with Configurable Policy)

3.16.3. ผู้รับจ้างต้องออกแบบการทำงานของ Batch ให้รองรับการยืนยันตัวตนและกำหนดสิทธิ์
ผู้ใช้งาน (Authentication and Authorization) อย่างเหมาะสม

3.16.4. ต้องมีการเข้ารหัสข้อมูลที่ใช้ระหว่างการประมวลผล ทั้งข้อมูลที่อยู่ในระหว่างการส่ง (In-
Transit) และข้อมูลที่จัดเก็บ (At-Rest) ตามมาตรฐานความปลอดภัยสากล เช่น TLS 1.2 หรือสูงกว่า และ
AES-256

3.16.5. ต้องมีการตรวจสอบและบันทึกการทำงาน (Audit Logging) ของ Batch แต่ละรอบ
เพื่อให้สามารถตรวจสอบย้อนหลังได้ เช่น เวลาเริ่มต้น เวลาสิ้นสุด สถานะสำเร็จ/ล้มเหลว และข้อผิดพลาด
(Error Details)

3.16.6. ระบบต้องสามารถรองรับกรณีการล่ม (Failure) ได้โดยต้องมีฟังก์ชันดังต่อไปนี้

หน้า 23 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.16.6.1. รองรับการทำ Retry และ Recovery อัตโนมัติ
3.16.6.2. สามารถทำ Resume/Restart ได้จากจุดที่ล้มเหลว (Checkpoint / Fault-

Tolerant Mechanism)
3.16.6.3. กรณีผิดพลาดร้ายแรง ต้องสามารถสั่ง Rollback หรือทำ Data Recovery

ได้อย่างปลอดภัย
3.16.7. ต้องออกแบบ Batch ให้สามารถทำงานแบบ Parallel หรือ Distributed ได้ (หาก

ลักษณะงานเอ้ืออำนวย) เพ่ือเพ่ิมความเร็วและลดความเสี่ยงจุดล้มเหลวเดียว (Single Point of Failure)

3.16.8. ต้องมีระบบแจ้งเตือนอัตโนมัติ (Alert) เมื ่อเกิดความล้มเหลวหรือผิดปกติในการ
ประมวลผล เช่น ผ่าน Email, Webhook หรือ Integration กับ Monitoring Tools เช่น Grafana, Zabbix,
Prometheus หรือเทียบเท่า

3.16.9. ผู ้รับจ้างต้องจัดทำรายงานสรุปผลการทำงานของ Batch ประจำรอบ (Batch Job
Summary Report) และต้องสามารถนำเสนอข้อมูลเชิงวิเคราะห์ได้ เช่น Job Success Rate, Average
Processing Time, Bottleneck Analysis เป็นต้น

3.16.10. ต้องพัฒนา Batch ตามหลัก Secure Coding เพื ่อป้องกันความเสี ่ยงด้านความ
ปลอดภัย เช่น Input Validation, Exception Handling และ Resource Management

3.16.11. ผู้รับจ้างต้องทดสอบการทำงานของ Batch ทั้งในสถานการณ์ปกติและสถานการณ์
ผิดพลาด (Normal and Exception Scenarios) พร้อมจัดทำเอกสารผลการทดสอบ (Test Report)

3.16.12. การพัฒนาระบบ Batch ต้องสามารถบูรณาการเข้ากับกระบวนการ DevSecOps ได้
เช่น รองรับการตรวจสอบช่องโหว่ก่อน Deployment

3.16.13. ระบบ Batch ต้องสามารถขยายตัวได้ในอนาคต (Scalable Design) เช่น การปรับ
จำนวน Process, Thread หรือ Node ตามปริมาณข้อมูลที่เพ่ิมข้ึน

3.16.14. Source Code ของระบบ Batch ทั้งหมด ต้องจัดเก็บในระบบ Version Control และ
สามารถตรวจสอบย้อนหลังได้ เช่น Git หรือเทียบเท่า

3.17. รองรับการใช้งาน WebSocket สำหรับงานที่ต้องการการเชื่อมต่อระยะยาว ในกรณีที่ระบบมีความ
จำเป็นต้องรองรับการประมวลผลแบบต่อเนื่อง เช่น การอัปโหลดไฟล์ขนาดใหญ่ หรือการประมวลผลข้อมูล
จำนวนมาก (Bulk Processing) ผู้รับจ้างต้องออกแบบให้สามารถรองรับการเชื่อมต่อผ่าน WebSocket ได้
อย่างมีประสิทธิภาพ โดยผู้รับจ้างต้องดำเนินการออกแบบและกำหนดค่าการเชื่อมต่อ WebSocket ทั้งในฝั่ง
Client และ Server ให้เป็นไปตามมาตรฐาน และสามารถประเมินผลได้ โดยมีข้อกำหนดอย่างน้อยดังนี้

3.17.1. ผู้รับจ้างต้องออกแบบและตั้งค่าการเชื่อมต่อ WebSocket ทั้งฝั่ง Client และ Server ให้
เป็นไปตามมาตรฐานอุตสาหกรรม โดยมีข้อกำหนดขั้นต่ำ ดังนี้

หน้า 24 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.17.1.1. มาตรฐาน IETF RFC 6455 (The WebSocket Protocol) เช่น ต้อง
สามารถรักษาการเชื่อมต่อแบบถาวร (Persistent Connection) ต้องสอดคล้องกับโดยไม่เกิด Timeout หรือ
ถูกตัดการเชื่อมต่อก่อนการประมวลผลเสร็จสิ้น

3.17.1.2. ต้องอ้างอิงและปฏิบัติตามแนวปฏิบัติด้านความปลอดภัยจากแหล่งข้อมูล
มาตรฐานอย่างน้อยดังต่อไปนี้

1) OWASP Web Security Testing Guide (WSTG) สำหรับกระบวนการ
ทดสอบด้านความปลอดภัยของเว็บ

2) OWASP Cheat Sheet Series สำหรับแนวทางการออกแบบ/เขียนโค้ด
ให้ปลอดภัย เช่น Authentication, Input Validation, Secure Headers

3) Common Weakness Enumeration (CWE) โดยอ้างอิงจากฐานข้อมูลของ MITRE
3.17.2. การจัดการช่องโหว่ (Vulnerability Management) โดยผู้รับจ้างต้องดำเนินการอย่างน้อยดังนี้

3.17.2.1. รวบรวม วิเคราะห์ และจัดทำรายการ CWE ที่เกี ่ยวข้องกับระบบและ
เทคโนโลยีที่ใช้จริง

3.17.2.2. ดำเนินการแก้ไข (Mitigation) ช่องโหว่ที่ตรวจพบทั้งหมดและไม่อยู ่ใน
ระดับ Critical หรือ High Severity

3.17.2.3. ต้องมีหลักฐานการตรวจสอบโดยสามารถตรวจสอบย้อนหลังได้
3.17.3. ข้อกำหนดฝั่ง Server โดยผู้รับจ้างต้องออกแบบและตั้งค่าระบบฝั่ง Server ให้รองรับการ

เชื่อมต่อผ่าน WebSocket ได้อย่างมีประสิทธิภาพ ปลอดภัย และรองรับปริมาณผู้ใช้งานได้ตามที่กำหนด โดย
มีข้อกำหนดดังนี้

3.17.3.1. รองรับจำนวนผู้ใช้งานพร้อมกัน (Concurrent Connections) โดยต้อง
รองรับการเชื่อมต่อพร้อมกันไม่น้อยกว่า จำนวนที่ระบบคาดว่าจะใช้งานพร้อมกันสูงสุดที่กำหนด + buffer 30%

3.17.3.2. การรักษาสถานะการเชื่อมต่อ (Connection Keep-Alive) โดยต้องมีการ
ส่ง Ping/Pong หรือ Heartbeat ตามมาตรฐาน WebSocket เพื่อรักษาการเชื่อมต่อ และตรวจสอบสถานะ
ของทั้งฝั่ง Client และ Server

3.17.3.3. การตั้งค่า Timeout สำหรับหากไม่มีการใช้งาน (Idle Connection) ต้อง
สามารถตั้งค่า timeout ได้อย่างน้อย ๕ นาที เพ่ือป้องกันการเชื่อมต่อที่ไม่มีการใช้งานกินทรัพยากรเกินความจำเป็น

3.17.3.4. การป้องกันการโจมตี โดยต้องสามารถดำเนินอย่างน้อยดังนี้
1) ต้องรองรับการตั้งค่าจำกัดจำนวนการเชื่อมต่อ (Connection Limit)
2) ต้องสามารถตั้งค่า Rate Limit เช่น จำกัด request ต่อวินาที เพ่ือ

ป้องกันการโจมตี
3) ต้องสามารถจำกัด Memory Usage ต่อการเชื่อมต่อ เพื่อไม่ให้ผู้ไม่หวัง

ดีเชื่อมต่อหลาย session แล้วกินทรัพยากรจนระบบล่ม
3.17.3.5. การบันทึกข้อมูลการเชื่อมต่อ (Connection Logging) โดยต้องสามารถ

ดำเนินอย่างน้อยดังนี้

หน้า 25 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

1) ต้องมีระบบบันทึก Log ทุกครั้งที่มีการเชื่อมต่อหรือตัดการเชื่อมต่อ
2) ข้อมูลที่ต้องบันทึกอย่างน้อยต้องมี เช่น
3) ที่เกิดเหตุการณ์ (timestamp)
4) หมายเลขไคลเอนต์หรือ IP Address ของผู้เชื่อมต่อ (Client ID/IP)
5) เหตุผลของข้อผิดพลาดหรือการตัดการเชื่อมต่อ (Error Reason)

3.17.4. ข้อกำหนดฝั่ง Client โดย ผู้รับจ้างต้องออกแบบและพัฒนาระบบฝั่ง Client ให้สามารถ
เชื่อมต่อกับ WebSocket ได้อย่างมีประสิทธิภาพ มั่นคง และรองรับสถานการณ์ต่าง ๆ ตามข้อกำหนดดังนี้

3.17.4.1. การกลับมาเชื ่อมต่อใหม่อัตโนมัติ (Auto Reconnect) หากเมื ่อผู ้ใช้
(Client) หลุดจากการเชื่อมต่อโดยไม่ตั ้งใจ เช่น สัญญาณเน็ตหลุด โดยระบบต้องสามารถ เชื่อมต่อกลับ
(Resume Connection) ได้โดยอัตโนมัติ ภายใน 5 วินาที เพื่อให้ผู้ใช้งานใช้งานได้อย่างต่อเนื่อง ไม่สะดุด

3.17.4.2. ระบบจับเวลาตรวจสอบการตอบสนอง (Timeout Handling) หาก Client
ส่งข้อมูลไปยัง Server แล้วไม่ได้รับการตอบกลับภายในเวลาที่กำหนด เช่น 30 วินาที ระบบต้องมีการตัดการ
เชื่อมต่อและแจ้งเตือน หรือพยายาม reconnect ใหม่โดยอัตโนมัติ เพื่อไม่ให้เกิด session ค้างหรือเปลือง
ทรัพยากร

3.17.4.3. ตรวจสอบความถูกต้องของข้อมูลและสถานะการเชื ่อมต่อ (Data &
Connection Integrity) โดยระบบฝั่ง Client ต้องตรวจสอบว่า ข้อมูลที่รับ-ส่งกับ Server ถูกต้องครบถ้วน
และต้องติดตามสถานะการเชื่อมต่อแบบเรียลไทม์ หากเกิดความผิดปกติต้องรู้ตัวทันที

3.17.4.4. การแจ้งเตือนผู ้ใช้งาน (User Notification) ในกรณีที ่เกิดปัญหาการ
เชื่อมต่อ เช่น หลุดบ่อย ไม่มีการตอบสนอง Client ต้องสามารถแสดงข้อความแจ้งเตือน (Notification) ให้
ผู้ใช้งานทราบอย่างเหมาะสม เช่น "กำลังเชื่อมต่อใหม่" หรือ "เกิดข้อผิดพลาดในการเชื่อมต่อ"

3.17.4.5. รองรับผู้ใช้งานจำนวนมาก (Concurrent Connections) โดย Client ต้อง
ออกแบบให้สามารถบริหารจัดการ การเชื่อมต่อพร้อมกันจำนวนมาก ได้โดยไม่กระทบต่อประสิทธิภาพการ
ทำงานของระบบ เช่น กรณีที่มีผู้ใช้งานหลายร้อยคน การเชื่อมต่อของแต่ละคนต้องไม่ทำให้ระบบหน่วงหรือ
กระตุก

3.18. ฐานข้อมูล (Database)

3.18.1. ผู ้รับจ้างต้องออกแบบและพัฒนาฐานข้อมูลโดยเลือกใช้ระบบฐานข้อมูลเชิงสัมพันธ์
(RDBMS) หรือ NoSQL ให้เหมาะสมกับลักษณะข้อมูลและการใช้งาน พร้อมรองรับสถาปัตยกรรม Master-
Slave หรือ Clustering เพื่อให้มีความพร้อมใช้งานสูง (High Availability) และขยายขนาดได้ (Scalability)
อย่างมีประสิทธิภาพ โดยโครงสร้างต้องรับมือกับปริมาณข้อมูลและจำนวนผู้ใช้งานจำนวนมากได้ตามแนวทาง
สากลด้านการเพิ่มประสิทธิภาพ (Performance Optimization) และกลยุทธ์การขยายฐานข้อมูล (Database
Scaling Strategies) โดยมีข้อกำหนดอย่างน้อยดังต่อไปนี้

3.18.1.1. Indexing

หน้า 26 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

1) ต้องมีการวิเคราะห์และสร้างดัชนี (Index) อย่างเหมาะสมกับรูปแบบ
การใช้งาน (Query Pattern)

2) ต้องหลีกเลี่ยงการสร้าง Index ซ้ำซ้อนหรือมากเกินไป ซึ่งอาจกระทบต่อ
ประสิทธิภาพการเขียนข้อมูล

3) ต้องมีการตรวจสอบและปรับปรุง Index อย่างสม่ำเสมอ เช่น ผ่าน
EXPLAIN, ANALYZE

3.18.1.2. Query Optimization
1) หลีกเลี่ยง SELECT * และใช้ฟิลด์เฉพาะที่จำเป็น
2) เขียน WHERE, JOIN, ORDER BY, GROUP BY ให้มีประสิทธิภาพ
3) ตรวจสอบแผนการประมวลผล (Query Plan) โดยใช ้คำส ั ่งเช่น

EXPLAIN, EXPLAIN ANALYZE
3.18.1.3. Connection Pooling

1) ต้องใช้เทคนิค Connection Pooling เช่น HikariCP, pgBouncer เพ่ือ
ลดการเปิด/ปิด connection บ่อยครั้ง

2) ช่วยลด Latency และเพ่ิม Throughput ของระบบ
3.18.1.4. Caching

1) ต้องมีการพิจารณาใช้ Cache ทั้งในระดับ Application เช่น Redis,
Memcached และระดับ Database เช่น Query Cache

2) ต้องจัดการ Expiry และ Invalidation อย่างเหมาะสม
3.18.1.5. Sharding และ Partitioning

1) สำหรับระบบที่มี Dataset ใหญ่หรือปริมาณการเขียนสูง ต้องพิจารณา
ใช้ Sharding หรือ Partitioning

2) Sharding: แยกฐานข้อมูลตาม Key เช่น UserID
3) Partitioning: แยกตามเงื่อนไข เช่น Range หรือ Hash
4) ต้องมีแผนการจัดการและตรวจสอบความสมดุลระหว่าง Shard

3.18.1.6. Replication
1) ต้องออกแบบการทำ Replication เพื่อรองรับ Read Scaling และ

High Availability เช่น Master-Slave, Multi-Master
2) ต้องจัดการ Latency, Conflict และ Read Consistency ให้เหมาะสม

3.18.1.7. Hardware และ Resource
1) ต้องพิจารณาทรัพยากรของฐานข้อมูลให้เพียงพอ เช่น RAM, CPU และ

Storage
2) หากเป็น Cloud ต้องระบุประเภท instance หรือ storage ที่มี IOPS สูง

3.18.1.8. Monitoring

หน้า 27 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

1) ต้องมีระบบตรวจสอบสถานะและประสิทธิภาพฐานข้อมูล เช่น Query
Latency, CPU/RAM/Disk I/O, Connection Utilization และควรแสดงการแจ้งเตือนเมื่อเกิด Query ที่ช้าหรือมีปัญหา
เช่น Prometheus, Grafana, pg_stat_statements, MySQL Performance Schema

3.18.1.9. Normalization / Denormalization
1) ต้องออกแบบ Schema ให้สมดุลระหว่าง Normalization (ลดซ้ำซ้อน)

และ Denormalization (เพ่ิมประสิทธิภาพ Read) ตาม Use Case
2) ต้องมีการประเมินผลกระทบต่อประสิทธิภาพและความสมบูรณ์ของ

ข้อมูล (Data Integrity)
3.18.1.10. Materialized Views

1) พิจารณาใช้ Materialized View สำหรับคำสั่ง Query ที่ซับซ้อนและใช้
บ่อย โดยแยกการคำนวณล่วงหน้า

2) ต้องมีการกำหนดการ Refresh View ที่เหมาะสม เช่น On-Demand
หรือ Scheduled

3.18.1.11. Vertical Scaling
1) ในกรณีที่ฐานข้อมูลต้องการความเร็วสูงทันที (short-term scale up)

ต้องสามารถเพ่ิม CPU, RAM หรือ Disk I/O ได ้
2) ควรออกแบบให้สามารถย้ายจาก Vertical ไปสู่ Horizontal ได้ในอนาคต

3.18.2. คุณสมบัติของธุรกรรมฐานข้อมูล (ACID Compliance) ผู้รับจ้างต้องออกแบบและพัฒนา
ฐานข้อมูลให้รองรับคุณสมบัติ ACID (Atomicity, Consistency, Isolation, Durability) เพ่ือรับประกันความ
ถูกต้อง ความสมบูรณ์ และความเชื่อถือได้ของข้อมูล โดยมีข้อกำหนดอย่างน้อยดังต่อไปนี้

3.18.2.1. Atomicity – การทำธุรกรรมแบบรวมทั้งหมด
1) การดำเนินการภายในแต่ละธุรกรรม (Transaction) ต้องสำเร็จทั้งหมด

หรือไม่ดำเนินการเลย (All-or-Nothing)
2) ในกรณีที่เกิดข้อผิดพลาด ต้องสามารถ Rollback ฐานข้อมูลกลับไปสู่

สถานะก่อนเริ่มธุรกรรมนั้นได้อย่างสมบูรณ์
3.18.2.2. Consistency – ความสอดคล้องของข้อมูล

1) ต้องกำหนด Constraints ที่เหมาะสม เช่น Foreign Key, Unique และ
Check Constraint บนตารางฐานข้อมูล โดยพิจารณาจากหลักการออกแบบฐานข้อมูลที่ถูกต้อง และตาม
ความจำเป็นที่เหมาะสมกับลักษณะข้อมูลและกฎเกณฑ์ของธุรกิจ (Business Rules) ของระบบได้อย่างถูกต้องครบถ้วน

2) ทุกธุรกรรมที่เกิดขึ้น ต้องไม่ทำให้ข้อมูลผิดกฎหรือขัดกับเงื ่อนไขของ
ระบบ ทั้งก่อนและหลังการทำธุรกรรมเสมอ

3.18.2.3. Isolation – ความเป็นอิสระของธุรกรรม
1) ธุรกรรมแต่ละชุดต้องถูกดำเนินการแยกจากกัน แม้มีการทำงานพร้อม

กัน (Concurrent Transaction)

หน้า 28 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

2) เลือกใช้ Isolation Level ที่เหมาะสม เช่น REPEATABLE READ หรือ
SERIALIZABLE เพื่อป้องกันปัญหาการอ่านข้อมูลที่ยังไม่ได้ commit (Dirty Read) หรือข้อมูลที่เปลี่ยนแปลง
ในระหว่างการอ่าน (Phantom Read) ซึ่งอาจทำให้ผลลัพธ์ไม่ถูกต้อง

3) กรณีที ่ระบบมีการใช้งานพร้อมกันจำนวนมาก (High Load) ต้อง
ออกแบบเพื่อรองรับการเกิดความขัดแย้งระหว่างการอ่านและเขียนข้อมูล (Read-Write Conflict) และหลาย
ธุรกรรมแย่งกันล็อกข้อมูลเดียวกัน (Lock Contention)

3.18.2.4. Durability – ความคงทนของข้อมูล
1) ข้อมูลที่ถูก Commit แล้วต้องไม่สูญหาย แม้เกิดระบบล้มเหลว เช่น

ไฟดับ ระบบรีสตาร์ต
2) ต้องมีการจัดเก็บ (Persist) ข้อมูลลงใน Disk หรือ Log ที่เชื่อถือได้ และ

ควรมีการทำ Replication อย่างน้อย ๑ ชุด (High Availability)
3) ในกรณีระบบที่มีหลายเครื่องแม่ข่าย (Distributed System) ต้องใช้

เทคนิคการ Re-sync, WAL (Write-Ahead Logging) หรือ Consensus Protocol เช่น Raft เพ่ือรับประกัน Durability
3.18.3. ผู้รับจ้างต้องเลือกประเภทของฐานข้อมูล (Database Type) ให้เหมาะสมกับลักษณะของ

ข้อมูลและลักษณะการใช้งาน (Workload) ของแต่ละฟังก์ชันในระบบ เพ่ือให้สามารถตอบสนองความต้องการ
เฉพาะด้านของงานได้อย่างมีประสิทธิภาพ โดยต้องพิจารณาใช้ประเภทฐานข้อมูลที่แตกต่างกันตามลักษณะ
การใช้งานทั้งนี ้ การเลือกใช้งานต้องสามารถให้เหตุผลประกอบที่ชัดเจน และสามารถตรวจสอบได้ตาม
หลักเกณฑ์ที่ยอมรับในอุตสาหกรรม ต้องยึดหลักเกณฑ์อย่างน้อยดังต่อไปนี้

3.18.3.1. Relational Database (SQL)
1) ใช้สำหรับระบบที่มีข้อมูลโครงสร้างชัดเจน (Structured Data) เช่น

ระบบจัดการผู้ใช้งาน ระบบสิทธิ์ ระบบการแจ้งเตือน
2) ต้องรองรับการทำ Transaction, ACID, Indexing และ Foreign Key Constraints
3) เช่น MySQL, PostgreSQL

3.18.3.2. In-memory Store
1) ใช ้สำหรับข้อมูลที ่ม ีการเข้าถึงบ่อยและต้องการความเร็วส ูง เช่น

Session, Flash Sale, Caching
2) ควรใช้ร่วมกับกลไก Expiration/TTL เพ่ือจัดการหน่วยความจำ
3) เช่น Redis, Memcached

3.18.3.3. Time-series Database
1) ใช ้สำหรับการเก็บข้อมูลตามเวลา เช ่น Stock Market,Sensor,

Monitoring
2) ต้องรองรับฟีเจอร์การเก็บตามเวลา เช่น Retention Policy, Rollup,

Compression
3) เช่น InfluxDB, TimescaleDB, Prometheus, Graphite

หน้า 29 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.18.3.4. Graph Database
1) ใช้สำหรับข้อมูลที่มีความสัมพันธ์ซับซ้อน เช่น ความสัมพันธ์ผู้ใช้งาน ,

Fraud Detection, Recommendation Engine
2) ต้องสามารถ Query ข้าม Node ได้อย่างมีประสิทธิภาพ
3) เช่น Neo4j, Amazon Neptune

3.18.3.5. Document Store
1) เหมาะกับข้อมูลที่ไม่แน่นอนและมีขนาดใหญ่ เช่น Metadata, ไฟล์

JSON, ไฟล์ภาพ
2) เหมาะกับระบบที่ไม่ต้อง Join หลายตาราง เช่น CMS, ระบบจัดเก็บเอกสาร
3) เช่น MongoDB, CouchDB

3.18.3.6. Wide Column Store
1) สำหรับงานด้าน Big Data, Analytics, Reporting ที่ต้องการการอ่าน

ข้อมูลขนาดใหญ่จากตารางแบบ Denormalized
2) รองรับ Query แบบ Scan หรือ Aggregate ได ้
3) เช่น Apache Cassandra, HBase, Google Bigtable

3.18.3.7. เงื่อนไขท่ัวไปเพิ่มเติม
1) ต้องเลือกประเภทฐานข้อมูลตามลักษณะข้อมูล ไม่ใช้ฐานข้อมูลประเภท

เดียวสำหรับทุก Use Case โดยไม่วิเคราะห์
2) หากใช ้ NoSQL หรือ Time-Series ต้องมีเหตุผลประกอบด้าน

ประสิทธิภาพ ปริมาณข้อมูล หรือรูปแบบการเข้าถึง
3.18.4. ผู ้รับจ้างต้องใช้กระบวนการปรับใช้ฐานข้อมูลและการควบคุมเวอร์ชัน (Database

Deployment & Version Control) และจัดการการเปลี่ยนแปลงของฐานข้อมูล (Database Schema
Migration) อย่างมีระบบ โดยมีข้อกำหนดอย่างน้อยดังต่อไปนี้

3.18.4.1. การควบคุมเวอร์ชันของฐานข้อมูล
1) ต้องใช้เครื ่องม ือสำหร ับการควบคุมเวอร ์ช ันของฐานข้อมูล เช่น

Liquibase หรือเครื่องมือที่มีคุณสมบัติเทียบเท่า เพ่ือจัดการการเปลี่ยนแปลงของโครงสร้างฐานข้อมูลอย่างเป็นระบบ
2) การเปลี ่ยนแปลงของฐานข้อมูลต้องถูกบันทึกในรูปแบบของไฟล์ที่

สามารถควบคุมเวอร์ชันได้ เช่น SQL, XML, YAML และจัดเก็บร่วมกับซอร์สโค้ดของแอปพลิเคชันในระบบ
Version Control เช่น Git

3) ต้องสามารถติดตามประวัติการเปลี ่ยนแปลงของฐานข้อมูลได้อย่าง
ชัดเจน และสามารถย้อนกลับ (Rollback) ไปยังสถานะก่อนหน้าได้ในกรณีที่เกิดปัญหา

3.18.4.2. การปฏิบัติตามแนวทางมาตรฐาน
1) การดำเนินการเปลี่ยนแปลงฐานข้อมูลต้องเป็นไปตามแนวทางปฏิบัติที่

ยอมรับในระดับสากล เช่น การแยกการเปลี่ยนแปลงโครงสร้างฐานข้อมูลออกจากการเปลี่ยนแปลงข้อมูล

หน้า 30 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

(Data Migration) และการจัดการการเปลี่ยนแปลงอย่างเป็นระบบ (Database Schema Migration Best
Practices)

2) การรวมกระบวนการเปลี่ยนแปลงฐานข้อมูลเข้ากับกระบวนการ CI/CD
เพ่ือให้สามารถปรับใช้การเปลี่ยนแปลงได้อย่างรวดเร็วและปลอดภัย (Continuous Integration/Continuous
Deployment (CI/CD)

3) การประสานงานระหว่างทีมพัฒนาและทีมปฏิบัต ิการเพื ่อให้การ
เปลี่ยนแปลงฐานข้อมูลเป็นไปอย่างราบรื่น (DevSecOps Practices)

3.18.5. การใช้งาน Database Middleware เพื่อแยกคำสั่งอ่าน-เขียน (Read-Write Splitting)
และจัดการ Replica ผู้รับจ้างต้องออกแบบและติดตั้งระบบฐานข้อมูลให้สามารถทำงานร่วมกับ Database
Middleware เพื่อแยกการประมวลผลคำสั ่งอ่านและเขียนออกจากกันอย่างมีประสิทธิภาพ รองรับการ
กระจายโหลด (Load Balancing) และเพิ่มความสามารถในการรองรับการขยายระบบและความทนทานของ
ระบบฐานข้อมูล โดยมีข้อกำหนดอย่างน้อยดังต่อไปนี้

3.18.5.1. คุณสมบัติของ Database Middleware
1) ทำหน้าท ี ่ เป ็นช ั ้นกลาง (Middleware Layer) ระหว ่างระบบ

Application กับระบบฐานข้อมูล (Database Cluster)
2) รองรับการสื่อสารผ่าน Database Network Protocol ที่เป็นมาตรฐาน

และสามารถใช้งานร่วมกับไคลเอนต์ที่มีอยู่ได้ เช่น TCP-based protocol ของฐานข้อมูลที่เลือกใช้
3) สามารถตั้งกฎการส่งต่อ (Routing Rules) ตามประเภทคำสั่ง เช่น

3.1) คำสั่งเขียน (INSERT, UPDATE, DELETE) → ไปยัง Primary Database
3.2) คำสั่งอ่าน (SELECT) → ไปยัง Replica Database ที่เหมาะสม

4) รองรับการกำหนด Routing อย่างน้อยดังนี ้
4.1) ประเภทคำสั่ง (Statement Type)
4.2) ผู้ใช้งาน (User Context)
4.3) ฐานข้อมูลหรือสคีมา (Schema)
4.4) ปริมาณโหลด (Connection Load)

3.18.5.2. ความสามารถด้าน Read-Write Splitting และ Replica
1) Middleware ต้องสามารถแยก Read และ Write ไปยัง Database

Node ที่เหมาะสมโดยอัตโนมัติ
2) รองรับการทำ Replication Monitoring และสามารถจัดการปัญหา

Replica lag ได้ เช่น Redirect ไป Primary เมื่อจำเป็น
3) สามารถปรับเปลี่ยนจำนวน Replica ได้แบบยืดหยุ่นโดยไม่กระทบต่อแอปพลิเคชัน

3.18.5.3. ความสามารถด้านความทนทานและความพร้อมใช้งานสูง (High Availability)
1) Middleware ต้องรองรับการทำงานแบบ Cluster หรือ Active-

Standby เพ่ือหลีกเลี่ยง Single Point of Failure

หน้า 31 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

2) รองรับการตรวจสอบสถานะของ Database Node และทำ Failover
อัตโนมัติเมื่อมีปัญหา

3) สามารถบันทึก Audit Log และ Query Routing Log เพ่ือตรวจสอบย้อนหลัง
3.19. OpenAPI

3.19.1. การออกแบบและจัดเก็บ OpenAPI Specification

3.19.1.1. ผู้รับจ้างต้องออกแบบ API โดยใช้ OpenAPI Specification เวอร์ชัน 3.0 ขึ้นไป
เป็นมาตรฐานหลัก

3.19.1.2. ผู้รับจ้างต้องจัดทำ ไฟล์ .yaml หรือ .json ของ OpenAPI สำหรับ ทุก API Service
3.19.1.3. ต้องใช้ Semantic Versioning (MAJOR.MINOR.PATCH) ในการจัดการ

เวอร์ชันของ API
3.19.1.4. ออกแบบ API ให้สอดคล้องและรองรับสถาปัตยกรรม Microservices

3.19.2. ข้อกำหนดด้านการจัดเก็บและบริหารจัดการ API Specification

3.19.2.1. จัดเก็บ API Specification ใน Git-based Repository โดยแยกออกจาก
ซอร์สโค้ดหลัก

3.19.2.2. ต้องจัดการเวอร์ชันของ Specification ด้วยวิธี Branching Strategy ที่
ชัดเจน เช่น Git Flow

3.19.3. ข้อกำหนดด้านการแก้ไขและปรับปรุง API Specification

3.19.3.1. ใช้เครื่องมือ Visual Editor (เช่น Swagger Editor, Stoplight Studio
หรือเครื่องมือเทียบเท่า) เพ่ืออำนวยความสะดวกในการปรับแก้ Specification

3.19.3.2. ต้องมี Workflow ในการจัดการและตรวจสอบคุณภาพ Specification เช่น
การใช้ OpenAPI Validator, Spectral หรือเครื่องมือที่เทียบเท่า

3.19.4. ข้อกำหนดด้านการนำ API Specification ไปใช้ (API Deployment)

3.19.4.1. มีแนวทางหรือเครื่องมือในการนำ Specification ไปใช้งานจริงโดยไม่ต้อง
แก้ไขหรือคอมไพล์ซอร์สโค้ดหลัก เช่น API Gateway, Auto-Generation Framework, Mock Server หรือ
Low-Code Platform

3.19.4.2. Pipeline CI/CD ต้องรองรับการอ่านและ Deploy Specification ได้แบบ
อัตโนมัติและรองรับ Zero Downtime Deployment

3.19.5. ข้อกำหนดการเปลี่ยนแปลง API (Change Management)

3.19.5.1. ต้องกำหนดแนวทางการจัดการ Breaking Change อย่างชัดเจน พร้อมการ
ทำ Diff Report ของ API Specification เวอร์ชันใหม่และเก่า

3.19.5.2. ระบบต้องรองรับการ Synchronize Specification ใหม่ไปยัง API
Gateway และ Mock Server โดยอัตโนมัติ

3.19.6. ข้อกำหนดด้านเอกสารประกอบและตัวอย่างการใช้งาน API (API Documentation)

หน้า 32 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.19.6.1. ต้องจัดทำเอกสารในรูปแบบ Swagger UI หรือ ReDoc พร้อมทั้งตัวอย่าง
โค้ดครบถ้วน (เช่น Curl, Postman Collection, SDK Stub)

3.19.6.2. เอกสารต้องระบุขั้นตอนการปรับปรุง Specification อย่างละเอียดและ
ชัดเจน

3.19.7. ข้อกำหนดเกี่ยวกับซอฟต์แวร์และลิขสิทธิ์ (Software Licensing)

3.19.7.1. เครื่องมือและเทคโนโลยีที่นำมาใช้ต้องเป็น Open Source หรือมีลิขสิทธิ์
แบบ Perpetual License ยกเว้นได้รับอนุมัติจากผู้ว่าจ้าง

3.19.7.2. ข้อกำหนดด้านการทำงานแบบอัตโนมัติและ DevSecOps (Automation
& DevSecOps Requirements)

3.19.8. ผู้รับจ้างต้องจัดทำระบบ CI/CD Pipeline อัตโนมัติสำหรับ API โดยครอบคลุมขั้นตอน
การตรวจสอบคุณภาพ API Specification, การทดสอบความปลอดภัยอัตโนมัติ (Security Automation
Testing), และการ Deploy API Specification ไปยัง API Gateway หรือระบบกลาง โดยอ้างอิงจาก
OpenAPI Specification ที่กำหนดไว้

3.19.9. ต้องใช้เครื่องมือ Automation Testing ที่เหมาะสม เช่น Postman CLI, Newman, หรือ
เทียบเท่า ในการทดสอบ API อัตโนมัติทุกครั้งก่อนการ Deploy

3.19.10. Pipeline ต้องมีขั้นตอน Security Scanning โดยใช้เครื่องมือที่เป็นที่ยอมรับในระดับ
สากล เช่น OWASP ZAP, SonarQube หรือเทียบเท่า และต้องตรวจสอบตาม OWASP API Security Top 10

3.19.11. ต้องมีข้ันตอนการทำ Code Review และ Specification Review แบบอัตโนมัติภายใน
Pipeline ก่อนที่จะนำ API ไปใช้งานจริง

3.19.12. กระบวนการ Deployment จะต้องรองรับการทำ Zero Downtime Deployment
และสามารถ Rollback กลับไปเวอร์ชันก่อนหน้าได้อย่างอัตโนมัติและรวดเร็ว

3.19.13. กระบวนการทำงานทั้งหมดต้องเป็นไปตามหลักการของ DevSecOps โดยผนวก
Security Testing ไว้ในทุกขั้นตอนของการพัฒนาและ Deployment (Shift-left Security)

3.19.14. ข้อกำหนดเพ่ิมเติมด้านความปลอดภัยและประสิทธิภาพ (Security and Performance)
3.19.14.1. ระบบต้องรองรับ OAuth 2.0, JWT, OWASP API Top 10 และแนวทาง

Secure Coding Practices
3.19.14.2. มีการวัดประสิทธิภาพ API ด้วย Prometheus หรือ OpenTelemetry
3.19.14.3. สามารถติดตามสถานะ API และ Microservices ผ่าน Dashboard กลาง

เช่น Grafana แสดงข้อมูล Metrics แบบ Real-time
3.20. การจัดเก็บข้อมูลแบบ Object Storage (Object Storage Design and Compliance) ผู้รับจ้าง

ต้องออกแบบและพัฒนาโซลูชันจัดเก็บข้อมูลโดยใช้ Object Storage ให้เหมาะสมกับระบบงาน โดยเฉพาะ
ระบบแบบ Microservices และระบบที่มีข้อมูลไม่เป็นโครงสร้าง (Unstructured Data) โดยมีข้อกำหนด
ดังต่อไปนี้

หน้า 33 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.20.1. ลักษณะของ Object Storage ที่ต้องรองรับอย่างน้อยดังนี้

3.20.1.1. ต้องจัดเก็บข้อมูลในลักษณะ “Object” โดยแต่ละ Object ต้องประกอบด้วย
ข้อมูลอย่างน้อยดังนี้

1) Data Payload
2) Metadata (Custom Metadata ได้)
3) Unique Identifier (Object ID / URI)

3.20.1.2. ต้องรองรับโครงสร้างแบบ Flat Structure (ไม่มี Directory Hierarchy)
3.20.1.3. ต้องรองรับการเข้าถึงผ่าน RESTful API ได ้

3.20.2. ความเหมาะสมกับงาน Microservices

3.20.2.1. แต่ละ Microservice ต้องสามารถส่ง/ดึงข้อมูลผ่าน API ไปยัง Object
Store ได้อย่างอิสระ (Decoupled Storage)

3.20.2.2. ต้องออกแบบให้รองรับการใช้งานร่วมกับระบบ Cloud Native และ
Containerized Services เช่น Kubernetes

3.20.2.3. ต้องสามารถตั้ง Policy ตาม Bucket หรือ Service เช่น TTL, Access Control
3.20.3. ความปลอดภัยในการเข้าถึง (Authentication & Authorization)

3.20.3.1. การเข้าถึง Object Store ต้องรองรับมาตรฐานความปลอดภัย ได้แก่
1) Token-based Access (เช่น OAuth 2.0, JWT)
2) Pre-signed URL สำหรับการอนุญาตแบบจำกัดเวลา
3) Access Control Policy (ACL) และ Bucket Policy

3.20.3.2. ต้องมกีารแยกสิทธิ์ระหว่าง Service และ User แต่ละรายอย่างชัดเจน (Least Privilege)
3.20.4. มาตรฐานและผลิตภัณฑ์ที่ยอมรับ

3.20.4.1. ผู้รับจ้างสามารถใช้ผลิตภัณฑ์ Object Storage ที่ได้มาตรฐานและรองรับ
การทำ High Durability เช่น MinIO, Ceph Object Gateway

3.20.4.2. มาตรฐานอ้างอิง
1) NIST 800-209 (Security Guidelines for Storage Infrastructure)
2) CNCF Cloud Native Storage Principles

3.20.5. รองรับ Use Cases อย่างน้อยดังนี ้

3.20.5.1. การจัดเก็บข้อมูลไม่เป็นโครงสร้าง (Unstructured Media: ภาพ, วิดีโอ, เสียง, เอกสาร)
3.20.5.2. การเก็บข้อมูลแบบ Data Archiving
3.20.5.3. การทำ Cloud-Native Storage สำหรับระบบ Microservices
3.20.5.4. การเก็บข้อมูลจาก IoT หรือ Sensor (Internet of Things)
3.20.5.5. รองรับระบบ Backup & Recovery

หน้า 34 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.20.5.6. รองรับการทำงานร่วมกับ Data Lake, Data Warehouse และ Machine
Learning Pipelines

3.21. การวัดและปรับปรุงประสิทธิภาพเว็บไซต์ (Website Performance Metrics & Optimization)
ผู้รับจ้างต้องดำเนินการออกแบบ พัฒนา และทดสอบเว็บไซต์หรือ Web Application ให้มีประสิทธิภาพสูง
และสามารถตรวจวัดตามดัชนีชี้วัดสำคัญ (Performance Metrics) ได้อย่างน้อยดังต่อไปนี้

3.21.1. ดัชนีชี้วัดประสิทธิภาพหลัก (Core Performance Metrics)

3.21.1.1. Load Time
1) ที่ใช้ในการโหลดหน้าเว็บทั้งหมดจนสามารถแสดงผลได้
2) ต้องใช้เครื่องมือวัด เช่น Lighthouse, WebPageTest หรือเทียบเท่า

3.21.1.2. Time to First Byte (TTFB)
1) ระยะเวลาที่เบราว์เซอร์ได้รับไบต์ข้อมูลแรกจากเซิร์ฟเวอร์
2) ต้องมีค่า < 500ms สำหรับผู้ใช้งานในภูมิภาคเป้าหมาย

3.21.1.3. Request Count
1) จำนวนคำขอ (HTTP Requests) ที่ต้องใช้เพ่ือโหลดหน้าเว็บ
2) ควรมีการรวมไฟล์หรือปรับลดเพ่ือไม่เกินเกณฑ์ ๗๐-๘๐ requests ต่อหน้า

3.21.1.4. DOMContentLoaded (DCL)
1) เวลาที่ HTML โหลดครบ ไม่รวม CSS/JS/รูปภาพ
2) ใช้สำหรับประเมินความพร้อมใช้งานเบื้องต้นของโครงสร้าง DOM

3.21.1.5. Time to Above-the-Fold Load
1) เวลาที่เนื้อหาบนสุดของเว็บเพจ (ก่อนการ scroll) ปรากฏครบ
2) ควรน้อยกว่า ๒ วินาที

3.21.1.6. First Contentful Paint (FCP)
1) เวลาแรกที่เบราว์เซอร์แสดงเนื้อหา เช่น ข้อความหรือรูปภาพ
2) เป้าหมาย < ๑.๘ วินาที

3.21.1.7. Page Size
1) ขนาดรวมของ HTML, CSS, JS, ภาพ และ assets ทั้งหมด
2) ควรไม่เกิน ๒.๕ MB ต่อหน้า หรือมีเทคนิค Lazy Loading

3.21.2. ข้อกำหนดเพ่ิมเติม

3.21.2.1. ต้องแสดงผลลัพธ์จากเครื ่องมือ Performance Audit อย่างน้อย ๒
เครื่องมือ พร้อมค่าเปรียบเทียบก่อน/หลังการปรับปรุง

3.21.2.2. จัดทำรายงานการวัดผลพร้อมคำอธิบายแนวทางการปรับปรุง
3.21.2.3. เว็บไซต์ต้องผ่านการทดสอบทั้งบน Desktop และ Mobile โดยใช้ค่าเกณฑ์

ตาม Google Lighthouse หรือ Core Web Vitals เป็นเกณฑ์ขั้นต่ำ

หน้า 35 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

3.22. ในกรณีที่ผู้รับจ้างมีแนวทางการออกแบบหรือแนวปฏิบัติ (Best Practice) ที่ดีกว่า มีประสิทธิภาพ
มากกว่า หรือทันสมัยกว่าที่ระบุไว้ในข้อกำหนดนี้ ผู้รับจ้างสามารถเสนอแนวทางดังกล่าวให้ผู้ว่าจ้างพิจารณาได้
ทั้งนี้ ผู ้รับจ้างต้องจัดทำข้อมูลเปรียบเทียบเชิงประจักษ์ อย่างชัดเจน เช่น ตารางเปรียบเทียบคุณสมบัติ
รายงานผลการทดสอบ หรือกรณีศึกษา (Case Study) เพื่อแสดงให้เห็นว่าแนวทางที่เสนอนั้นเหนือกว่า
ข้อกำหนดเดิมในด้านคุณภาพ ประสิทธิภาพ ความปลอดภัย หรือความสามารถในการบำรุงรักษา ทั้งนี้ การ
นำไปใช้ต้องได้รับความเห็นชอบจากผู้ว่าจ้างก่อนดำเนินการ

3.23. การออกแบบตามข้อ ๓.๑ ถึงข้อ ๓.๒2 ต้องได้รับการเห็นชอบจากสำนักงานการตรวจเงินแผ่นดิน

4. การพิสูจน์แนวคิดและสาธิต (Proof of concept and Demo)

4.1. พิสูจน์แนวคิดในด้าน DevSecOps

4.1.1. ทดสอบกระบวนการ CI/CD และความสามารถในการทำ Automation

4.1.2. ทดสอบระบบรักษาความปลอดภัยในระดับ Source Code และ Infrastructure

4.1.3. พิสูจน์ว่า DevSecOps สามารถทำงานร่วมกับสถาปัตยกรรมของระบบได้จริง

4.2. พิสูจน์แนวคิดในด้าน Restore และ Disaster Recovery

4.2.1. ทดสอบกระบวนการสำรองข้อมูล (Backup) และกู้คืนข้อมูล (Restore)

4.2.2. ประเมินความสามารถในการกู้คืนระบบจากความเสียหาย (Disaster Recovery)

4.2.3. ทดสอบการทำ Failover และการทำงานต่อเนื่อง (High Availability)

4.3. พิสูจน์แนวคิดในด้าน Load Balancing และ Auto Scaling

4.3.1. ทดสอบความสามารถในการรองรับจำนวนผู้ใช้พร้อมกัน (Concurrent Users)

4.3.2. ทดสอบการทำงานของระบบภายใต้ภาระงานสูง (Stress Test)

4.3.3. ทดสอบระบบ Auto Scaling ให้ขยายขนาดตาม Workload อัตโนมัติ

4.4. พิสูจน์แนวคิดในด้าน Security และ Zero Trust Architecture

4.4.1. ทดสอบการยืนยันตัวตนของผู้ใช้ (Authentication)

4.4.2. ทดสอบการปฏิเสธการเข้าถึงโดยไม่มีสิทธิ์ (Authorization)

4.4.3. ทดสอบการป้องกันการโจมตี เช่น Brute Force, SQL Injection และ XSS

4.5. พิสูจน์แนวคิดในด้าน Compatibility และ Cross-Platform

4.5.1. ทดสอบความสามารถของระบบในการทำงานข้ามแพลตฟอร์ม (Cross-Platform)

4.5.2. ทดสอบการทำงานร่วมกับ Browser และอุปกรณ์ท่ีแตกต่างกัน

หน้า 36 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

4.6. พิสูจน์แนวคิดในด้าน Performance และ Response Time

4.6.1. ทดสอบความเร็วในการตอบสนองของระบบ

4.6.2. ทดสอบประสิทธิภาพในการเรียก API และฐานข้อมูล

5. การพัฒนา (Implementation)

5.1. ผู้รับจ้างพัฒนาระบบให้เป็นไปตามรายละเอียดคุณลักษณะเฉพาะตามภาคผนวก ก รายละเอียดคุณ
ลักษณะเฉพาะระบบสารสนเทศของโครงการ

5.2. ผู้รับจ้างต้องพัฒนาระบบโดยใช้ภาษาโปรแกรมที่เป็นที่ยอมรับในอุตสาหกรรม ได้แก่ Python, Go,
Java หรือ PHP ตามความเหมาะสมกับงานแต่ละส่วน ทั้งนี้ ต้องเลือกใช้ framework หรือเครื่องมือที่รองรับ
การจัดการเวอร์ชันของโครงสร้างฐานข้อมูล (Database Schema Version Control หรือ Database
Migration) ได้อย่างเป็นระบบ เช่น หากใช้ Python ให้ใช้ Django หากใช้ Java ให้ใช้ Spring Boot +
Liquibase/Flyway หากใช้ Go ให้ใช้ Gorm/Goose หรือเทียบเท่า หากใช้ PHP ให้ใช้ Laravel หรือเทียบเท่า
โดย framework หรือเครื่องมือที่เลือกใช้ต้องมีคุณสมบัติอย่างน้อยดังนี้

5.2.1. บันทึกการเปลี่ยนแปลงโครงสร้างฐานข้อมูล (Schema Migration)

5.2.2. รองรับการ Rollback/Migrate ข้อมูล

5.2.3. บูรณาการกับกระบวนการพัฒนา (CI/CD Pipeline) ได ้

5.3. ผู้รับจ้างต้องพัฒนาระบบโดยใช้เครื่องมือหรือเฟรมเวิร์คที่รองรับการพัฒนาในลักษณะ RESTful API
และสามารถทำงานได้อย่างรวดเร็วและมีความเสถียร โดยต้องสามารถรองรับผู้ใช้จำนวนมากในเวลาเดียวกัน
ได้และทำงานได้บนแพลตฟอร์มที่หลากหลาย

5.4. ผู้รับจ้างต้องพัฒนาระบบให้รองรับการยืนยันตัวตนด้วยมาตรฐานที่เป็นที่ยอมรับในระดับสากล เช่น
OAuth2, OpenID Connect หรือวิธีการอื่นที่มีความปลอดภัยสูงและรองรับการยืนยันตัวตนแบบหลาย

ขั้นตอน (Multi-Factor Authentication)

5.5. ผู้รับจ้างต้องพัฒนาระบบให้รองรับการสื่อสารระหว่างบริการด้วยวิธีที ่มีความปลอดภัยสูง เช่น
RESTful API หรือ RPC และต้องมีการเข้ารหัสข้อมูลระหว่างการรับ - ส่งข้อมูล

5.6. ผู้รับจ้างต้องพัฒนาระบบให้มีความสามารถในการส่งการแจ้งเตือนของระบบผ่านช่องทางต่าง ๆ เช่น
Email และ Push Notification โดยสามารถทำงานร่วมกับระบบอื่น ๆ ได้ผ่าน Webhook หรือ API หรือ
Integration กับ Monitoring Tools เช่น Grafana, Zabbix, Prometheus หรือเทียบเท่า

5.7. ผู้รับจ้างต้องพัฒนาระบบให้สามารถทำ Load Balancing และกระจายทราฟฟิกขาเข้าได้อย่างมี
ประสิทธิภาพ โดยรองรับผู ้ใช้งานพร้อมกันไม่น้อยกว่า ๔ ,๐๐๐ ราย พร้อมมีการตรวจสอบสถานะของ
เซิร์ฟเวอร์ (Health Check) และสามารถขยายขนาดระบบได้อัตโนมัติเมื่อตรวจพบปริมาณงานท่ีเพ่ิมขึ้น

หน้า 37 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

5.8. ผู้รับจ้างต้องพัฒนาระบบให้สามารถในการบันทึกและวิเคราะห์ข้อมูล Log การทำงานของระบบ
แบบเรียลไทม์ และสามารถแจ้งเตือนเม่ือระบบมีปัญหา โดยต้องสามารถค้นหาข้อมูลย้อนหลังได้

5.9. ผู้รับจ้างต้องพัฒนาระบบให้สามารถรองรับการขยายขนาดได้อัตโนมัติ (Auto Scaling) โดยต้อง
สามารถปรับเพิ่มหรือลดจำนวนเซิร์ฟเวอร์ได้ตามปริมาณงานที่เปลี่ยนแปลงไปและสามารถรองรับปริมาณ
การใช้งานที่เพ่ิมข้ึนได้โดยไม่มี Downtime

5.10. ผู้รับจ้างจะต้องดำเนินการพัฒนาและจัดทำระบบให้เป็นไปตามแนวทางหรือข้อเสนอแนะด้าน
ความปลอดภัยที่เป็นที่ยอมรับในระดับสากล เช่น แนวทางจาก OWASP (เช่น OWASP Top Ten, OWASP
API Security, หรือ OWASP Application Security Guidelines) หรือแนวทางอื่นที่เทียบเท่า ทั้งนี้เพ่ือ
ป้องกันช่องโหว่ที่อาจส่งผลกระทบต่อความม่ันคงปลอดภัยของระบบ โดยผู้รับจ้างจะต้องติดตามและปรับปรุง
ให้สอดคล้องกับแนวทางท่ีอัปเดตในอนาคตอย่างเหมาะสม

5.11. ผู้รับจ้างต้องทำ Unit Test สำหรับระบบที่พัฒนาขึ้นใหม่ ให้ครอบคลุมฟังก์ชันหลักทุกตัวอย่างน้อย
๘๐% และสามารถใช้เครื่องมือที่สามารถแสดงในรูปแบบที่ตรวจสอบย้อนหลังได้

5.12. กรณีระบบที่พัฒนาขึ้นใหม่ผู้รับจ้างต้องทำการประเมินและแก้ไขช่องโหว่ (Mitigation Criteria)
และสามารถใช้เครื่องมือที่สามารถแสดงในรูปแบบที่ตรวจสอบย้อนหลังได้ โดยต้องดำเนินการอย่างน้อยดังนี้

5.12.1. ผู้รับจ้างต้องดำเนินการตรวจสอบและ แก้ไขช่องโหว่ทั้งหมด ที่อยู่ในระดับ Critical และ
High Severity ตามนิยามของเครื่องมือที่เลือกใช้

5.12.2. ช่องโหว่ระดับต่ำกว่า (Medium/Low/Info) ต้องมีการจัดทำแผนการแก้ไข หรือเอกสาร
แสดงเหตุผลในการยอมรับความเสี่ยง (Risk Acceptance)

5.12.3. เกณฑ์คุณภาพของโค้ดหลังการปรับปรุง ระบบต้องมีผลการวิเคราะห์โค้ดผ่านเกณฑ์
(Pass Quality Criteria) โดยมีค่าข้ันต่ำดังนี้

5.12.3.1. ช่องโหว่ระดับ Critical และ High ไม่มีคงค้าง
5.12.3.2. ระดับความสามารถในการบำรุงรักษา (Maintainability) และ ความ

น่าเชื่อถือ (Reliability) อยู่ในระดับ A หรือเทียบเท่า
5.12.3.3. Code Coverage (จาก Unit Test) ไม่ต่ำกว่า ๘๐% ของโค้ดที่เพ่ิมหรือเปลี่ยนแปลง

5.13. ผู้รับจ้างต้องออกแบบและพัฒนาระบบ Caching เพื่อช่วยเพิ่มประสิทธิภาพในการเข้าถึงข้อมูล
ของระบบ โดยกลยุทธ์ที่เลือกใช้ต้องมีความเหมาะสมกับลักษณะข้อมูลและรูปแบบการเข้าถึง (Read/Write
Pattern) และสามารถควบคุมความสอดคล้องของข้อมูล (Data Consistency) ได้อย่างเหมาะสม โดยมี
ข้อกำหนดอย่างน้อยดังนี ้

5.13.1. กลยุทธ์ฝั่ง Read (Read Caching Strategies)

5.13.1.1. Cache Aside
1) แอปพลิเคชันตรวจสอบ Cache ก่อน หากไม่พบ (cache miss) จึงไปดึง

ข้อมูลจากฐานข้อมูล และทำการอัปเดต Cache

หน้า 38 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

2) เหมาะกับข้อมูลที่ไม่เปลี่ยนแปลงบ่อย
5.13.1.2. Read Through

1) การอ่านทั้งหมดทำผ่าน Cache Layer โดย Cache จะทำหน้าที่โหลด
ข้อมูลจากฐานข้อมูลให้เองเมื่อเกิด cache miss

2) เหมาะกับการใช้งานแบบอ่านบ่อย (read-heavy)
5.13.2. กลยุทธ์ฝั่ง Write (Write Caching Strategies)

5.13.2.1. Write Around
1) เขียนข้อมูลลงฐานข้อมูลโดยตรง โดยไม่อัปเดต Cache
2) เหมาะกับข้อมูลที่ไม่ค่อยถูกอ่านหลังจากเขียน

5.13.2.2. Write Through
1) เขียนข้อมูลลงทั้ง Cache และฐานข้อมูลพร้อมกัน
2) เหมาะกับข้อมูลที่ต้องการความสอดคล้องสูงทันทีหลังการเขียน

5.13.2.3. Write Back
1) เขียนข้อมูลลง Cache ก่อน แล้วค่อยเขียนลงฐานข้อมูลภายหลังเป็น

รอบ (batch/interval)
2) เหมาะกับระบบที ่เน้นประสิทธิภาพการเขียนและสามารถยอมรับ

ความหน่วงเวลาในการ Persist ข้อมูลได ้
5.13.3. ข้อกำหนดทั่วไป โดยมีข้อกำหนดอย่างน้อยดังต่อไปนี้

5.13.3.1. กำหนดค่าการจัดการอายุของข้อมูลในแคช (Time to Live - TTL) โดย
ผู้รับจ้างต้องสามารถกำหนดช่วงเวลาที่ข้อมูลในแคชจะมีอายุและหมดอายุอัตโนมัติได้ เพ่ือป้องกันการใช้ข้อมูล
ที่ล้าสมัย

5.13.3.2. กำหนดกลยุทธ์การล้างข้อมูลในแคช (Invalidation Strategy) และการ
Refresh ข้อมูล โดยระบบต้องสามารถล้างหรือทำให้ข้อมูลในแคชไม่ถูกต้องเมื่อมีการอัปเดตจากฐานข้อมูลต้น
ทาง และสามารถโหลดข้อมูลใหม่เข้ามาทดแทนโดยอัตโนมัติ

5.13.3.3. มีการจัดการกรณีท่ีข้อมูลไม่อยู่ในแคช (Cache Miss) เมื่อไม่มีข้อมูลในแคช
ระบบต้องสามารถเรียกข้อมูลจากแหล่งที่มา เช่น ฐานข้อมูล และนำกลับมาเก็บในแคชอย่างเหมาะสม

5.13.3.4. ปัญหาข้อมูลไม่ตรงกันระหว่างแคชกับฐานข้อมูล (Cache Inconsistency)
โดยผู้รับจ้างต้องออกแบบกลไกให้สามารถตรวจจับและแก้ไขข้อมูลแคชที่ไม่ตรงกับฐานข้อมูลได้ เพื่อความ
ถูกต้องของข้อมูลที่นำมาแสดง

5.13.3.5. สามารถดำเนินการกู้คืนข้อมูลในกรณีที่เกิดปัญหา (Recovery)ระบบต้อง
สามารถฟ้ืนฟูข้อมูลจากแคช หรือเรียกข้อมูลจากแหล่งต้นทางในกรณีท่ีระบบแคชล่มหรือสูญหาย

5.13.3.6. สามารถเลือกใช้กลยุทธ์การแคชแบบผสมผสานตามความเหมาะสม เช่น
Cache Aside และ Write Through

หน้า 39 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

1) Cache Aside: ดึงข้อมูลจากฐานข้อมูลเมื่อไม่มีในแคช แล้วบันทึกเข้า
แคชภายหลัง

2) Write Through: บันทึกข้อมูลเข้าสู่แคชและฐานข้อมูลพร้อมกันทุกครั้ง
ที่มีการอัปเดต

5.13.3.7. หากใช้เครื่องมือจัดการแคช เช่น Redis หรือเทียบเท่า ต้องมีคุณสมบัติ
อย่างน้อยดังต่อไปนี้

1) รองรับการทำงานแบบ Distributed Cache เพื่อกระจายข้อมูลและ
โหลดการใช้งาน

2) รองรับ High Availability (HA) เพื่อให้บริการได้อย่างต่อเนื่องแม้มี
Node บางส่วนขัดข้อง

5.14. ผู้รับจ้างต้องพัฒนาระบบให้เป็นไปตามข้อ ๓ การออกแบบ

6. การทดสอบ (Testing)

6.1. Integration Testing

6.1.1. ระบบจะต้องถูกทดสอบการทำงานร่วมกันระหว่างโมดูลต่าง ๆ เช่น จากโมดูลจัดการผู้ใช้
ไปยังระบบแจ้งเตือน และต่อเนื่องไปยังการส่งอีเมล เพื่อให้มั่นใจว่าข้อมูลสามารถส่งต่อกันได้ถูกต้องและ
เป็นไปตามลำดับการใช้งานจริง และจัดทำรายงานผลการทดสอบประกอบการส่งมอบระบบ

6.1.2. ระบบจะต้องถูกตรวจสอบตามรายละเอียดคุณลักษณะเฉพาะตามภาคผนวก ก รายละเอียด
คุณลักษณะของระบบสารสนเทศของโครงการ

6.2. System Testing

6.2.1. ผู้พัฒนาต้องทำการทดสอบระบบทั้งหมดจากต้นทางถึงปลายทางตามกรณีใช้งานที่กำหนด
(End-to-End Test) และจัดทำรายงานผลการทดสอบประกอบการส่งมอบระบบ

6.2.2. ระบบจะต้องถูกตรวจสอบตามรายละเอียดคุณลักษณะเฉพาะตามภาคผนวก ก
รายละเอียดคุณลักษณะของระบบสารสนเทศของโครงการ

6.3. Automated Testing

6.3.1. ต้องสามารถใช้เครื่องมือในการทดสอบอัตโนมัติ (Automated Testing Tools) ได้อย่างน้อย
๗๐% ของจำนวน Test Case ทั้งหมด โดยต้องสามารถแสดงผลการทดสอบย้อนหลังได้

6.4. User Acceptance Testing (UAT)

6.4.1. ต้องมีการดำเนินการ UAT ร่วมกับเจ้าหน้าที่หรือผู้ใช้งานปลายทางของหน่วยงาน โดยใช้
กรณีทดสอบที่ผ่านการอนุมัติจากผู้ว่าจ้าง และต้องจัดทำรายงานข้อเสนอแนะจากผู้ใช้ปลายทาง

6.5. Performance Testing / Load Testing

หน้า 40 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

ระบบต้องสามารถรองรับผู้ใช้งานพร้อมกันได้ไม่น้อยกว่า 1,๐๐๐ คน โดย Response Time ต้อง
ไม่เกิน 5 วินาทีต่อคำขอ โดยต้องแนบผลการทดสอบ Performance ด้วยเครื่องมือที่ได้มาตรฐาน (เช่น
JMeter หรือเทียบเท่า)

6.6. Security Testing

6.6.1. ผู้รับจ้างต้องทำการทดสอบความปลอดภัยของระบบ เช่น การโจมตีแบบ SQL Injection,
Cross-site Scripting (XSS), Broken Access Control และต้องแนบรายงาน Security Testing ที่มีผลเป็น
“ผ่าน” ก่อนการส่งมอบ

6.6.2. ผู้รับจ้างต้องทดสอบด้านความปลอดภัยให้เป็นไปตามข้อ 5.10

6.7. Backup & Recovery Testing

6.7.1. ผู้รับจ้างต้องทำการทดสอบการ Backup และ Restore ข้อมูลระบบโดยไม่ทำให้ข้อมูลสูญหาย

6.8. Cross-Browser & Cross-Device Testing ระบบต้องสามารถใช้งานได้ปกติบน Web Browser
อย่างน้อย Chrome, Firefox, Safari และ Edge รวมถึงสามารถใช้งานได้ทั้งบนเครื่องคอมพิวเตอร์ และ
Mobile (iOS และ Android)

6.9. กรณีที ่ซอฟต์แวร์ที ่นำมาใช้งานร่วมกันกับระบบที ่พัฒนาขึ ้นใหม่เป็นซอฟต์แวร์สำเร ็จรูป
(Commercial Off-The-Shelf - COTS) ผู้รับจ้างต้องดำเนินการทดสอบระบบตามความเหมาะสมเท่าที่
สามารถดำเนินการได้ โดยมีรายละเอียดการทดสอบที่ต้องดำเนินการ ดังนี้

6.9.1. Configuration Testing ต้องทดสอบการตั้งค่าหรือกำหนดค่าต่าง ๆ ที่ปรับแต่งให้เหมาะ
กับการใช้งานในหน่วยงาน เช่น สิทธิ์ผู้ใช้, ภาษา, ฟังก์ชันเฉพาะ ฯลฯ เพื่อยืนยันว่าการกำหนดค่านั้นถูกต้อง
และไม่ทำให้ระบบทำงานผิดพลาด

6.9.2. Integration Testing ต้องทดสอบการเชื่อมโยงกับระบบภายนอก เช่น ระบบบัญชี, ระบบ
บุคลากร, Email Gateway, LDAP หรือ SSO โดยต้องยืนยันว่าข้อมูลส่งต่อกันได้ถูกต้องและครบถ้วน

6.9.3. User Acceptance Testing (UAT) ผู้รับจ้างต้องจัดทำกรณีทดสอบ (Test Case) ตาม
Use Case ที่ตกลงร่วมกับผู้ว่าจ้าง และดำเนินการ UAT ร่วมกับผู้ใช้งานปลายทาง โดยต้องจัดทำรายงาน
ผลทดสอบและข้อเสนอแนะจากผู้ใช้ปลายทาง

6.9.4. Performance Testing (เฉพาะในส่วนที่สามารถวัดผลได้) หากระบบอนุญาตให้ทดสอบ
Performance ได้ เช่น ผ่าน API หรือโหลดหน้าเว็บ สามารถทดสอบ Response Time และความสามารถใน
การรองรับผู้ใช้งานพร้อมกันได้ตามข้อตกลง

6.9.5. Security & Access Control Testing ทดสอบสิทธิ์การเข้าถึงของผู้ใช้งานประเภทต่าง ๆ
ตามที่กำหนด (Role-based Access Control) เพื่อยืนยันว่าไม่มีการเข้าถึงข้อมูลโดยไม่ได้รับอนุญาตหาก
ระบบมีช่องให้สื ่อสารข้อมูลหรือรับอินพุต ให้ทดสอบความเสี่ยงพื้นฐาน เช่น การป้อนข้อมูลผิดรูปแบบ ,
การเปลี่ยน URL

หน้า 41 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

6.9.6. Logging & Audit Trail Verification ตรวจสอบว่า ระบบมีการบันทึกการใช้งานของผู้ใช้
(User Activity Log) และสามารถตรวจสอบย้อนหลังได้ตามนโยบายของหน่วยงาน

ในกรณีที่ซอฟต์แวร์สำเร็จรูปไม่อนุญาตให้ทดสอบบางประเภท เช่น Penetration Test หรือ Load
Test ที่อาจส่งผลกระทบต่อระบบ ผู้รับจ้างต้องแจ้งให้ผู้ว่าจ้างทราบล่วงหน้า และระบุข้อจำกัดของการทดสอบ
อย่างชัดเจน พร้อมเอกสารรับรองจากผู้ผลิตหรือตัวแทนจำหน่าย (ถ้ามี)

6.10. ผู้รับจ้างต้องดำเนินการในส่วนที่เกี่ยวข้องกับการการทดสอบ (Testing)ตามข้อ ๓ การออกแบบ

7. การปรับใช้ (Deployment)

7.1. ผู้รับจ้างจะต้องดำเนินการปรับใช้ (Deployment) ระบบในแต่ละสภาพแวดล้อมที่แยกจากกัน
(Environment Separation) ดังนี้

7.1.1. Dev (Development Environment) สำหรับนักพัฒนาใช้พัฒนาและทดลองฟังก์ชันพ้ืนฐาน

7.1.2. UAT (User Acceptance Test Environment) สำหรับผู้ใช้งานปลายทาง/เจ้าของระบบ
ทำการตรวจสอบความถูกต้องของระบบ

7.1.3. PROD (Production Environment) สำหรับการให้บริการจริง

7.2. การปรับใช้ในแต่ละ Environment ต้องใช้กระบวนการแบบอัตโนมัติ (Automated Deployment)
ผ่าน Pipeline ที่ควบคุมด้วยระบบเวอร์ชัน เช่น Git หรือเทียบเท่า และต้องมีการควบคุมการเปลี่ยนแปลง
(Change Control) ที่ตรวจสอบย้อนหลังได้

7.3. ผู้รับจ้างจะต้องจัดเตรียมและปรับใช้ระบบในสภาพแวดล้อมแยกออกจากกันโดยสิ้นเชิง ได้แก่ Dev,
UAT และ Production ตามลำดับ เพ่ือรองรับการพัฒนา ทดสอบ และการใช้งานจริง

7.4. กำหนดสิทธิ์การเข้าถึงแต่ละ Environment

7.5. ต้องเปิดใช้งาน Logging และ Monitoring อย่างเหมาะสม

7.6. ต้องสามารถ Rollback หากการ Deploy ล้มเหลว

7.7. ปรับปรุงการนำระบบไปใช้งาน โดยต้องไม่มีผลกระทบต่อการให้บริการ และไม่มีช่วงเวลาหยุด
ทำงาน (Zero Downtime Deployment)

7.8. ผู้รับจ้างต้องดำเนินการในส่วนที่เกี่ยวข้องกับการปรับใช้ (Deployment) ตามข้อ ๓ การออกแบบ

8. การควบคุมการเปลี่ยนแปลง (Change Control)
สำหรับควบคุมการปรับแก้ไขระบบ หรือ Deployment ระบบใน Production Environment รายละเอียด ดังนี้
8.1. ขอบเขตของการเปลี่ยนแปลง (Scope of Change)

8.1.1. เหตุผลในการเปลี่ยนแปลง (Rationale)

หน้า 42 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

8.1.2. ผลกระทบที่อาจเกิดขึ้น (Impact Assessment)

8.1.3. แผนการสำรองข้อมูลและการกู้คืน (Backup & Rollback Plan)

8.1.4. แผนทดสอบหลังการเปลี่ยนแปลง (Post-Deployment Testing Plan)

8.2. แผนดังกล่าวต้องนำเสนอต่อผู้ว่าจ้าง เพ่ือรับทราบและอนุมัติก่อนดำเนินการทุกครั้ง เพ่ือให้การดำเนินงาน
เป็นไปตามมาตรฐานการควบคุมการเปลี่ยนแปลง และลดความเสี่ยงต่อการหยุดชะงักของบริการ

8.3. กระบวนการควบคุมการเปลี่ยนแปลงต้องดำเนินการภายใต้มาตรฐานสากลที่ได้รับการยอมรับ ได้แก่
ITIL: แนวปฏิบัติที่ดีที่สุดในการบริหารจัดการบริการ IT โดยเฉพาะกระบวนการ Change Management,
COBIT: กรอบการกำกับดูแล IT ที่เน้นการควบคุมและความสอดคล้องกับเป้าหมายองค์กร, ISO/IEC 20000:
มาตรฐานระบบบริหารจัดการบริการ IT ที่กำหนดให้มีการควบคุมการเปลี่ยนแปลงอย่างเป็นระบบ

9. การซ่อมบำรุง (Maintenance)

9.1. ผู้รับจ้างจะต้องดำเนินการซ่อมบำรุงระบบ (Maintenance) เพื่อให้ระบบสามารถทำงานได้อย่าง
ต่อเนื่อง มีเสถียรภาพ และสอดคล้องกับความต้องการของสำนักงานการตรวจเงินแผ่นดิน ภายหลังจากการส่ง
มอบระบบ โดยขอบเขตงานซ่อมบำรุงต้องครอบคลุมรายละเอียด ดังนี้

9.1.1. ผู้รับจ้างต้องมีแผนการตรวจสอบและบำรุงรักษาระบบเป็นระยะ เช่น การเคลียร์ log
ตรวจสอบฐานข้อมูล ตรวจสอบสถานะของระบบที่สำคัญ และการอัปเดตความปลอดภัย (Security Patch)

9.1.2. ต้องมีการจัดทำบันทึกการดำเนินการบำรุงรักษา (Maintenance Record)

9.1.3. ผู้รับจ้างต้องแก้ไขข้อผิดพลาดหรือบั๊ก (Bug) ของระบบที่เกิดขึ้นหลังการส่งมอบ โดยไม่
คิดค่าใช้จ่ายเพิ่มเติมภายในระยะเวลารับประกัน

9.1.4. กรณีระบบต้องปรับให้เข้ากับสภาพแวดล้อมที่เปลี่ยนไป เช่น เปลี่ยน API ของระบบ
ภายนอก ปรับให้รองรับ Web Browser เวอร์ชันใหม่ ฯลฯ ผู้รับจ้างต้องดำเนินการให้อยู่ในขอบเขตของระบบ
ที่ส่งมอบไว้เดิม

9.1.5. ผู้รับจ้างต้องจัดให้มีช่องทางสำหรับการแจ้งปัญหา เช่น ผ่านระบบ Ticket, Email,
Webform หรือเทียบเท่า

9.1.6. ต้องมีระบบติดตามสถานะของปัญหา และจัดลำดับความสำคัญ (Priority) ได ้

9.1.7. ต้องให้บริการซ่อมบำรุงภายหลังการส่งมอบระบบ เป็นระยะเวลาไม่น้อยกว่า ๑๒ เดือน

9.1.8. SLA อ้างอิงตาม ขอบเขตของงาน โครงการพัฒนาแพลตฟอร์มการตรวจเงินแผ่นดิน
หัวข้อ 12 การกำหนดระยะเวลารับประกันความชํารุดบกพร่อง

9.1.9. ผู้รับจ้างต้องจัดทำ รายงานซ่อมบำรุงรายเดือน โดยระบุรายการปัญหาที่พบ วิธีการแก้ไข
และผลการดำเนินงาน

หน้า 43 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

9.1.10. รายงานต้องสามารถตรวจสอบย้อนหลังได้ และอยู่ในรูปแบบที่ผู้ว่าจ้างสามารถตรวจสอบ
ได้ง่าย เช่น PDF หรือเอกสารอิเล็กทรอนิกส์

9.1.11. ผู้รับจ้างต้องรับประกันความสมบูรณ์ของระบบหลังการส่งมอบ ตามระยะเวลาที่กำหนด
โดยความผิดพลาดที่เกิดจากระบบหรือการเขียนโปรแกรมต้องแก้ไขโดยไม่มีค่าใช้จ่าย

9.1.12. การรับประกันต้องรวมถึงฐานข้อมูล ระบบสำรองข้อมูล และการสื่อสารภายในระบบ

9.1.13. ผู ้รับจ้างต้องสามารถให้การสนับสนุนกรณีฉุกเฉินได้ตามที่ตกลง เช่น ผ่านช่องทาง
โทรศัพท์หรือวิดีโอคอล โดยเฉพาะในเวลาทำการ หรือ ตามท่ีโครงการกำหนด

9.1.14. การควบคุมการเปลี ่ยนแปลง (Change Control) ก่อนการปรับแก้ไขระบบหรือ
Deployment ขึ้นสู่ Production Environment ผู้รับจ้างต้องจัดทำแผนการเปลี่ยนแปลง (Change Plan)
โดยอย่างน้อยต้องระบุดังนี ้

9.1.14.1. ขอบเขตของการเปลี่ยนแปลง (Scope of Change)

9.1.14.2. เหตุผลในการเปลี่ยนแปลง (Rationale)

9.1.14.3. ผลกระทบที่อาจเกิดข้ึน (Impact Assessment)

9.1.14.4. แผนการสำรองข้อมูลและการกู้คืน (Backup & Rollback Plan)

9.1.14.5. แผนทดสอบหลังการเปลี่ยนแปลง (Post-Deployment Testing Plan)

แผนดังกล่าวต้องนำเสนอต่อผู้ว่าจ้าง เพื่อรับทราบและอนุมัติก่อนดำเนินการทุกครั้ง
เพ่ือให้การดำเนินงานเป็นไปตามมาตรฐานการควบคุมการเปลี่ยนแปลง และลดความเสี่ยงต่อการหยุดชะงักของ
บริการ

9.1.15. การมอนิเตอร์ระบบ (System Monitoring) ผู้รับจ้างต้องจัดให้มีการมอนิเตอร์การทำงาน
ของระบบอย่างต่อเนื่องตลอดระยะเวลาโครงการ ครอบคลุมการตรวจสอบดังนี้

9.1.15.1. สถานะระบบ (System Status) โดยมีรายละเอียดอย่างน้อยดังนี้

1) สถานะ ของ Service/Component ต่าง ๆ
2) สถานะ CPU
3) สถานะ Memory
4) สถานะ Disk แต่ละ Partition

9.1.15.2. ประสิทธิภาพ (Performance)

9.1.15.3. ความผิดปกติ (Anomalies)

9.1.15.4. เหตุการณ์ด้านความปลอดภัย (Security Incidents)

9.1.16. การจัดการเหตุการณ์ผิดปกติ (Incident Management) เมื่อผู้รับจ้างตรวจพบเหตุการณ์
ผิดปกติหรือสัญญาณเตือน (Alert) เช่น ความล้มเหลวของบริการ (Service Failure) การใช้ทรัพยากรเกิน

หน้า 44 จาก 44
 คณพศ หงสวรางกูร ปริญญา เพ็ญไพรัตน์กลุ ธีรยุทธ วัฒนะธรรมศิริ ศริ์รัฐ ศรสีนุทรพินิต สาลิเดช สัมฤทธ์ิ

มธุรส ไพบูลย์วรชาติ วิมลมาศ วัฒนจรูญโรจน์ รัฐธรรม ชวนเชย พันธุ์นิชิต โปษยานนท์ นัฐพล สีสวย
วิชาญ จินดารัตน์ สิทธิศักดิ์ ไชยสุข อำนาจวิทย์ หมู่ศิลป์ จุฑามาศ วงศ์เหมอนันต์ ทักษิณ หลังสตา

เกณฑ์ (Resource Utilization Overload) ค่าประสิทธิภาพตกต่ำ (Performance Degradation) หรือ
สัญญาณความเสี่ยงด้านความปลอดภัย (Security Incidents) ผู้รับจ้างต้องดำเนินการดังนี้

9.1.16.1. ตอบสนองและแก้ไขเบื้องต้น (Immediate Response) ภายในขอบเขตที่
ควบคุมได้โดยไม่รออนุมัติ เพ่ือป้องกันความเสียหายขยายวงกว้าง

9.1.16.2. แจ้งเหตุการณ์ต่อผู้ว่าจ้างโดยเร็ว

9.1.16.3. จัดทำรายงานสรุปเหตุการณ์ (Incident Report) ซึ่งรวมถึงสิ่งที่ตรวจพบ
การดำเนินการแก้ไข และข้อเสนอแนะการป้องกันเหตุการณ์ซ้ำซ้อน (Preventive Recommendations)

9.1.17. การจัดการปัญหาด้านประสิทธิภาพ (Performance Issue Management) ในกรณีที่
พบว่าค่าประสิทธิภาพเกินกว่าเกณฑ์ เช่น Response Time เกินค่าที่กำหนด Error Rate สูงกว่ามาตรฐาน
หรือ Resource Utilization สูงผิดปกติ ผู้รับจ้างต้องดำเนินการดังนี้

9.1.17.1. จัดทำแผนการแก้ไขปัญหา (Remediation Plan) ประกอบอย่างน้อยดังนี้

1) สาเหตุของปัญหา (Root Cause)
2) แนวทางการแก้ไข (Proposed Solution)
3) ระยะเวลาในการดำเนินการ (Proposed Timeline)
4) ผลกระทบที่อาจเกิดข้ึน (Impact)

9.1.17.2. เสนอต่อผู้ว่าจ้างเพ่ือพิจารณาและอนุมัติก่อนดำเนินการแก้ไข

9.1.18. ระยะเวลาในการแก้ไข (Remediation Timeline) การกำหนดระยะเวลาในการแก้ไขต้อง
เหมาะสมและเป็นธรรม โดยคำนึงถึงความเร่งด่วน ความสำคัญของปัญหาต่อการให้บริการ และข้อจำกัด
ทรัพยากรของผู้รับจ้าง ทั้งนี้ ผู ้ว่าจ้างมีสิทธิร่วมพิจารณาและตกลงยอมรับระยะเวลาที่เสนอมา และการ
ดำเนินการต้องไม่กระทบต่อความต่อเนื่องของบริการ

9.1.19. การรายงานผลการแก้ไข (Remediation Reporting) หลังเสร็จสิ้นการแก้ไขปัญหา ผู้รับ
จ้างต้องจัดทำ รายงานสรุปผลการแก้ไข (Remediation Report) เพื่อส่งให้ผู้ว่าจ้างสำหรับตรวจสอบและ
ยืนยันผลการแก้ไข รวมถึงใช้ประกอบการรับรองคุณภาพและความต่อเนื่องของการให้บริการ

